11.03.2024

Teaser image to Get to know MCML Junior Member Martin Binder

Get to know MCML Junior Member Martin Binder

Created during the first MCMLxDJS-Workshop

Artificial intelligence only becomes a disadvantage if it is overestimated or used incorrectly, says Martin Binder. In his research, he improves algorithms and, above all, simplifies the work of other scientists.

This article was written by Caroline Drees from the Deutsche Journalistenschule (DJS). It was created in a workshop together with DJS. Talented journalism students met some of MCML`s junior researchers and got a glimpse of their work. The result: One article about the research of each junior member that took part at the workshop written by one journalism student.


„Ich gieße Algorithmen in Programmcodes“

Künstliche Intelligenz wird nur dann zum Nachteil, wenn man sie überschätzt oder falsch einsetzt, findet Martin Binder. Er verbessert Algorithmen und vereinfacht damit vor allem die Arbeit für andere Wissenschaftler.

Mal angenommen, ich habe Krebs. Dann möchte ich wissen, welche Therapie die Beste für mich ist. Wie kann ich wieder gesund werden? Um diese Fragen zu beantworten, kann die Auswertung von medizinischen Daten helfen, zum Beispiel die Größe des Tumors oder bisher erfolgte Behandlungen. Je mehr Daten ich habe, desto bessere Prognosen kann ich über den Krankheitsverlauf machen – mithilfe von Machine Learning (Maschinelles Lernen, ML), was ein Teilbereich von Künstlicher Intelligenz ist, können Algorithmen Muster in Daten erkennen und Vorhersagen machen. Die helfen dabei, bessere Entscheidungen zu treffen. ML kann aus Erfahrung neues Wissen schaffen.

Mit meiner Forschung erfinde ich allerdings keine komplett neuen Algorithmen, sondern entwickle bekannte Algorithmen weiter und verbessere sie. Vor allem gieße ich sie in einen Programmcode, sodass man sie besser anwenden kann.

Für die Programmiersprache R habe ich das Softwarepacket mlr3pipelines entwickelt: Ich habe einen Code geschrieben, mit dem ML-Anwender Berechnungen durchführen können – und so ihre Algorithmen auf Datensätze anwenden können, ohne sich groß mit der Mathematik dahinter auskennen zu müssen. Damit kann ich die Forschung anderer angenehmer und KI einer breiteren Menge an Wissenschaftlern zugänglich machen. Mit meinem Programm können Forscher relativ einfach, wie in einem Baukasten, verschiedene Methoden durchprobieren und so die Lösung ihres Problems finden, ohne sich mit jeder einzelnen Methode beschäftigen zu müssen. Statt einen Tag lang zu programmieren, können sie mein Paket innerhalb von einer halben Stunde anwenden. Das Paket nutzt auch die Industrie, um Daten mit ML zu untersuchen.

Das Programm ist Open Source, der Quellcode steht also öffentlich zur Verfügung und kann von jedem eingesehen, genutzt und weiterentwickelt werden. Allerdings kann ich nicht verfolgen, wer genau es benutzt. Informationen darüber bekomme ich nur über das Feedback der Nutzer.

Im Prinzip könnte man mit dem Programm alle möglichen Daten verarbeiten. Man benutzt es aber weniger für unstrukturierte Daten, wie Bilder- oder Tondateien, die zum Beispiel für die Gesichts- oder Sprachkennung verwendet werden, sondern für Tabellen, die tausende Spalten haben können. Ich kann beispielsweise Prognosen über Krankheitsverläufe stellen: Ich sammele Patienteninformationen wie den BMI, ob sie Raucher oder Nichtraucher sind, die Länge des Krankenhausaufenthaltes und so weiter und habe dann eine zusätzliche Spalte in der Tabelle mit einer Variable, die ich vorhersagen will.

An all diesen Entdeckungen bin ich nicht unmittelbar beteiligt, das machen ja die anderen Forscher. Aber sie tun es mit meinem Programm – Ich sorge also mittelbar für hoffentlich noch einige Entdeckungen. Meine Arbeit ist ein Türöffner, ML kann häufiger angewandt und es können mehr Vorhersagen getroffen werden. Damit bin ich Teil einer großen Strömung, die gerade an Fahrt aufnimmt: ML hilft uns, die Welt besser zu verstehen. In meinen Augen überwiegen dabei die Vorteile. Das würde ich gerne mal mit jemandem diskutieren, der anderer Meinung ist. Ich denke, dass es gut ist, wenn Menschen mehr Wissen darüber haben, was passieren wird. Die Nachteile, die manche herbeibeschwören, entstehen dann, wenn man ML überschätzt oder falsch einsetzt. Wenn man unzureichende Daten hat und dann Dinge erwartet, die man nicht erwarten kann – wenn man Müll rein gibt, dann kommt auch Müll heraus, und auf Basis dessen darf man keine Entscheidungen treffen. Aber richtig durchgeführt, bietet ML der Gesellschaft etwas Positives.

Martin Binder ist Doktorand am Lehrstuhl für „Statistical Learning and Data Science“ an der Ludwig-Maximilians-Universität München. Er forscht hauptsächlich zu maschinellem Lernen und hat ein Softwarepaket entwickelt, das dessen Anwendung vereinfacht. Bevor er seinen Weg in die computergestützte Statistik fand, machte er einen Mathematik Master in theoretischer Physik und einen Master in Biostatistik.

11.03.2024


Related

Link to Several MCML PIs receive BMBF funding

18.11.2024

Several MCML PIs receive BMBF funding

LMU Munich, in collaboration with MCML and Prof. Stefan Feuerriegel, is launching projects to advance robotics and AI capabilities.


Link to Exploring the Impact of AI in Medicine

12.11.2024

Exploring the Impact of AI in Medicine

MCML Junior Member Anna Reithmeir’s doctoral research at TUM focuses on aligning multi-temporal or multimodal images to track anatomical changes like tumor growth.


Link to MCML PI Gitta Kutyniok featured on Plattform Lernende Systeme

08.11.2024

MCML PI Gitta Kutyniok featured on Plattform Lernende Systeme

MCML PI Gitta Kutyniok's profile on Plattform Lernende Systeme highlights her work on the mathematical foundations of AI.


Link to Terra X: Talk on AI

17.10.2024

Terra X: Talk on AI

Checkout our PIs Björn Ommer and Björn Schuller in the Terra X talk on AI.


Link to Nobel Prize in Physics 2024: Harald Lesch reacts! (Björn too...and Björn too)

16.10.2024

Nobel Prize in Physics 2024: Harald Lesch reacts! (Björn too...and Björn too)

Checkout our PIs Björn Ommer and Björn Schuller in the Terra X short.