Home  | News

05.12.2023

Tiny logo
Teaser image to MCML at EMNLP 2023

MCML at EMNLP 2023

17 Accepted Papers (9 Main, 7 Findings, and 1 Workshop)

Conference on Empirical Methods in Natural Language Processing, Singapore, Dec 06-10, 2023

We are happy to announce that MCML researchers have contributed a total of 17 papers to EMNLP 2023: 9 Main, 7 Findings, and 1 Workshop papers. Congrats to our researchers!

Main Track (9 papers)

M. Weller-Di Marco • K. HämmerlA. Fraser
A Study on Accessing Linguistic Information in Pre-Trained Language Models by Using Prompts.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

M. Giulianelli • J. Baan • W. Aziz • R. Fernández • B. Plank
What Comes Next? Evaluating Uncertainty in Neural Text Generators Against Human Production Variability.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

E. Garces Arias • V. Pai • M. Schöffel • C. Heumann • M. Aßenmacher
Automatic transcription of handwritten Old Occitan language.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

N. Kassner • O. Tafjord • A. Sabharwal • K. Richardson • H. Schütze • P. Clark
Language Models with Rationality.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

R. Litschko • M. Müller-Eberstein • R. van der Goot • L. Weber-GenzelB. Plank
Establishing Trustworthiness: Rethinking Tasks and Model Evaluation.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

M. Wang • H. Adel • L. Lange • J. Strötgen • H. Schütze
GradSim: Gradient-Based Language Grouping for Effective Multilingual Training.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

L. WeissweilerV. Hofmann • A. Kantharuban • A. Cai • R. Dutt • A. Hengle • A. Kabra • A. Kulkarni • A. Vijayakumar • H. Yu • H. Schütze • K. Oflazer • D. Mortensen
Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

X. WangB. Plank
ACTOR: Active Learning with Annotator-specific Classification Heads to Embrace Human Label Variation.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

S. Xu • S. T.y.s.s • O. Ichim • I. Risini • B. Plank • M. Grabmair
From Dissonance to Insights: Dissecting Disagreements in Rationale Construction for Case Outcome Classification.
EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

Findings Track (7 papers)

A. H. KargaranA. Imani • F. Yvon • H. Schütze
GlotLID: Language Identification for Low-Resource Languages.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI GitHub

A. Köksal • T. Schick • H. Schütze
MEAL: Stable and Active Learning for Few-Shot Prompting.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI GitHub

A. Köksal • O. Yalcin • A. Akbiyik • M. T. Kilavuz • A. Korhonen • H. Schütze
Language-Agnostic Bias Detection in Language Models with Bias Probing.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI GitHub

W. LaiA. ChronopoulouA. Fraser
Mitigating Data Imbalance and Representation Degeneration in Multilingual Machine Translation.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

Y. LiuH. YeL. Weissweiler • R. Pei • H. Schütze
Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

M. Müller-Eberstein • R. van der Goot • B. Plank • I. Titov
Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

E. Nie • H. Schmid • H. Schütze
Unleashing the Multilingual Encoder Potential: Boosting Zero-Shot Performance via Probability Calibration.
Findings @EMNLP 2023 - Findings of the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

Workshops (1 paper)

V. Hangya • S. Severini • R. Ralev • A. FraserH. Schütze
Multilingual Word Embeddings for Low-Resource Languages using Anchors and a Chain of Related Languages.
MRL @EMNLP 2023 - 3rd Workshop on Multi-lingual Representation Learning at the Conference on Empirical Methods in Natural Language Processing. Singapore, Dec 06-10, 2023. DOI

#research #top-tier-work #bischl #fraser #plank #schuetze
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Read more
Back to Top