Home  | News

17.06.2022

Tiny logo
Teaser image to MCML at CVPR 2022

Two Accepted Papers

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, Jun 19-24, 2022

We are happy to announce that MCML researchers have contributed a total of 2 papers to CVPR 2022. Congrats to our researchers!

Main Track (2 papers)

A. Khakzar • P. Khorsandi • R. Nobahari • N. Navab
Do Explanations Explain? Model Knows Best.
CVPR 2022 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA, Jun 19-24, 2022. DOI GitHub

D. Muhle • L. Koestler • N. Demmel • F. Bernard • D. Cremers
The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation Optimization under Uncertain Feature Positions.
CVPR 2022 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA, Jun 19-24, 2022. DOI

#research #top-tier-work #cremers #navab #rueckert
Subscribe to RSS News feed

Related

Link to

19.01.2026

MCML at AAAI 2026

MCML researchers are represented with 9 papers at AAAI 2026 (6 Main, and 3 Workshops).

Link to MCML PI Frauke Kreuter Featured on ARD alpha on AI

19.01.2026

MCML PI Frauke Kreuter Featured on ARD Alpha on AI

MCML PI Frauke Kreuter featured on ARD alpha discussing AI in daily life, workplace applications, and responsible, future-ready use.

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to MCML PIs Featured in Süddeutsche Zeitung

12.01.2026

MCML PIs Featured in Süddeutsche Zeitung

MCML PIs Xiaoxiang Zhu and Felix Dietrich featured in Süddeutsche Zeitung for TU Munich’s 2025 breakthroughs in AI and data science.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Back to Top