Home  | News

04.12.2021

Tiny logo
Teaser image to MCML at NeurIPS 2021

MCML at NeurIPS 2021

Seven Accepted Papers (2 Main, and 5 Workshops)

35th Conference on Neural Information Processing Systems, Virtual, Dec 06-14, 2021

We are happy to announce that MCML researchers have contributed a total of 7 papers to NeurIPS 2021: 2 Main, and 5 Workshop papers. Congrats to our researchers!

Main Track (2 papers)

J. MoosbauerJ. HerbingerG. Casalicchio • M. Lindauer • B. Bischl
Explaining Hyperparameter Optimization via Partial Dependence Plots.
NeurIPS 2021 - 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL GitHub

Y. Zhang • A. KhakzarY. LiA. Farshad • S. T. Kim • N. Navab
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information.
NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL

Workshops (5 papers)

B. BischlG. CasalicchioM. Feurer • P. Gijsbers • F. Hutter • M. Lang • R. G. Mantovani • J. N. van Rijn • J. Vanschoren
OpenML Benchmarking Suites.
Track on Datasets and Benchmarks @NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL

M. Mittermeier • M. WeigertD. Rügamer
Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach.
Tackling Climate Change with ML @NeurIPS 2021 - Workshop on Tackling Climate Change with Machine Learning at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

T. WeberM. IngrischB. BischlD. Rügamer
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Deep Generative Models and Downstream Applications @NeurIPS 2021 - Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

T. WeberM. Ingrisch • M. Fabritius • B. BischlD. Rügamer
Survival-oriented embeddings for improving accessibility to complex data structures.
Bridging the Gap: from ML Research to Clinical Practice @NeurIPS 2021 - Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. arXiv

M. Weber • J. Xie • M. Collins • Y. Zhu • H. Adam • B. Green • A. Geiger • D. Cremers • A. Ošep • L. Leal-Taixé • P. Voigtlaender • B. Chen
STEP: Segmenting and Tracking Every Pixel.
Track on Datasets and Benchmarks @NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

#research #top-tier-work #bischl #cremers #feurer #ingrisch #kuechenhoff #leal-taixe #navab #rueckert #ruegamer
Subscribe to RSS News feed

Related

Link to Anne-Laure Boulesteix Among the World’s Most Cited Researchers

13.11.2025

Anne-Laure Boulesteix Among the World’s Most Cited Researchers

MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.

Link to Björn Ommer Featured in Frankfurter Rundschau

13.11.2025

Björn Ommer Featured in Frankfurter Rundschau

Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.

Link to Fabian Theis Among the World’s Most Cited Researchers

13.11.2025

Fabian Theis Among the World’s Most Cited Researchers

Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.

Link to Explaining AI Decisions: Shapley Values Enable Smart Exosuits

13.11.2025

Explaining AI Decisions: Shapley Values Enable Smart Exosuits

AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.

Link to

10.11.2025

MCML at ICDM 2025

MCML researchers are represented with 2 papers at ICDM 2025.

Back to Top