Home  | News

24.09.2021

Tiny logo
Teaser image to MCML at MICCAI 2021

MCML at MICCAI 2021

Two Accepted Papers

24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, Sep 27-Oct 01, 2021

We are happy to announce that MCML researchers have contributed a total of 2 papers to MICCAI 2021. Congrats to our researchers!

Main Track (2 papers)

A. Khakzar • S. Musatian • J. Buchberger • I. V. Quiroz • N. Pinger • S. Baselizadeh • S. T. Kim • N. Navab
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub

A. Khakzar • Y. Zhang • W. Mansour • Y. Cai • Y. Li • Y. Zhang • S. T. Kim • N. Navab
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub

#research #top-tier-work #bischl #navab #rueckert
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Read more
Back to Top