Home  | News

13.11.2020

Tiny logo
Teaser image to MCML at EMNLP 2020

Two Accepted Papers (2 Findings)

Conference on Empirical Methods in Natural Language Processing, Virtual, Nov 16-20, 2020

We are happy to announce that MCML researchers have contributed a total of 2 papers to EMNLP 2020: 2 Finding papers. Congrats to our researchers!

Findings Track (2 papers)

N. KassnerH. Schütze
BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA.
Findings @EMNLP 2020 - Findings of the Conference on Empirical Methods in Natural Language Processing. Virtual, Nov 16-20, 2020. DOI

M. J. Sabet • P. Dufter • F. Yvon • H. Schütze
SimAlign: High Quality Word Alignments without Parallel Training Data using Static and Contextualized Embeddings.
Findings @EMNLP 2020 - Findings of the Conference on Empirical Methods in Natural Language Processing. Virtual, Nov 16-20, 2020. DOI

#research #top-tier-work #schuetze
Subscribe to RSS News feed

Related

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Link to Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

16.12.2025

Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.

Link to Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

16.12.2025

Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

Hinrich Schütze discusses Giotto.ai’s efficient AI models, highlighting memory separation and context-aware decoding to improve robustness.

Link to Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

16.12.2025

Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

Xiaoxiang Zhu maps 2.75B buildings in 3D, revealing global urbanization, housing, and social inequalities using AI.

Back to Top