Home  | News

04.11.2019

Tiny logo
Teaser image to MCML at ACM SIGSPATIAL 2019

One Accepted Paper

27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, ILL, USA, Nov 05-08, 2019

We are happy to announce that MCML researchers have contributed a total of 1 paper to ACM SIGSPATIAL 2019. Congrats to our researchers!

Main Track (1 paper)

F. Borutta • S. Schmoll • S. Friedl
Optimizing the Spatio-Temporal Resource Search Problem with Reinforcement Learning.
ACM SIGSPATIAL 2019 - 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago, ILL, USA, Nov 05-08, 2019. DOI

#research #top-tier-work #seidl
Subscribe to RSS News feed

Related

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Link to Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

16.12.2025

Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.

Link to Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

16.12.2025

Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

Hinrich Schütze discusses Giotto.ai’s efficient AI models, highlighting memory separation and context-aware decoding to improve robustness.

Link to Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

16.12.2025

Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

Xiaoxiang Zhu maps 2.75B buildings in 3D, revealing global urbanization, housing, and social inequalities using AI.

Link to From Sitting Dog to Standing: A New Way to Morph 3D Shapes

11.12.2025

From Sitting Dog to Standing: A New Way to Morph 3D Shapes

ICLR 2025 work by Lu Sang and Daniel Cremers in collaboration with U Bonn enables smooth, physics-aware 3D shape deformation from point clouds.

Back to Top