19
Jun
Colloquium
Resampling-based inference for the average treatment effect in observational studies with competing risks
Sarah Friedrich, Universität Augsburg
19.06.2024
4:15 pm - 5:45 pm
LMU Department of Statistics and via zoom
In observational studies with time-to-event outcomes subject to competing risks, the g-formula can be used to estimate a treatment effect in the presence of confounding factors. The construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference, however, is complicated. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches.
In this talk, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version, the so-called wild bootstrap. We compare these approaches with regard to asymptotic properties and based on simulation studies and demonstrate their usage in a data example.
Related
Colloquium • 05.02.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Isabel Valera (Saarland University in Saarbrücken).
Colloquium • 29.01.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Sophie Langer (University of Twente).
Colloquium • 15.01.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Sonja Greven (HU Berlin).
Colloquium • 11.12.2024 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Stijn Vansteelandt (Ghent University).
Munich AI Lectures • 25.11.2024 • Große Aula der LMU Geschwister-Scholl-Platz 1, Room 120 80539 München
The Mathematical Universe behind Deep Neural Networks
Join us on Nov 25 for Prof. Helmut Bölcskei’s lecture on the mathematical foundations driving deep neural networks, hosted by Bavarian AI at LMU.