19

Jun

Teaser image to Resampling-based inference for the average treatment effect in observational studies with competing risks

Colloquium

Resampling-based inference for the average treatment effect in observational studies with competing risks

Sarah Friedrich, Universität Augsburg

   19.06.2024

   4:15 pm - 5:45 pm

   LMU Department of Statistics and via zoom

In observational studies with time-to-event outcomes subject to competing risks, the g-formula can be used to estimate a treatment effect in the presence of confounding factors. The construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference, however, is complicated. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches.

In this talk, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version, the so-called wild bootstrap. We compare these approaches with regard to asymptotic properties and based on simulation studies and demonstrate their usage in a data example.


Related

Link to TBA

Colloquium  •  05.02.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Isabel Valera (Saarland University in Saarbrücken).


Link to TBA

Colloquium  •  29.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sophie Langer (University of Twente).


Link to TBA

Colloquium  •  15.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sonja Greven (HU Berlin).


Link to TBA

Colloquium  •  11.12.2024  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Stijn Vansteelandt (Ghent University).


Link to The Mathematical Universe behind Deep Neural Networks

Munich AI Lectures  •  25.11.2024  •  Große Aula der LMU Geschwister-Scholl-Platz 1, Room 120 80539 München

The Mathematical Universe behind Deep Neural Networks

Join us on Nov 25 for Prof. Helmut Bölcskei’s lecture on the mathematical foundations driving deep neural networks, hosted by Bavarian AI at LMU.