06

Jun

Teaser image to Interpretable prediction with missing values

AI Keynote Series

Interpretable Prediction With Missing Values

Fredrik Johansson, Chalmers University of Technology

   06.06.2024

   12:00 pm - 1:30 pm

   Online via Zoom

Missing values plague many application domains of machine learning, both in training data and in deployment. Healthcare is just one example—patient records are notorious for omissions of important variables and collecting them during clinical practice can be costly and time consuming. Healthcare also tends to demand interpretability so that predictions can be quickly calculated and justified, often using rule-based risk scores. Surprisingly, prediction with missing values and interpretability are largely incompatible using classical methods. Imputation obfuscates predictions and algorithms designed for interpretability typically have no native handling of prediction with missing values. In this talk, I will introduce two solutions to this problem, suitable under different conditions, and propose directions for future work.

Organized by:

LMU Munich, Institute of AI in Management


Related

Link to Practical Causal Reasoning as a Means for Ethical ML

Colloquium  •  25.06.2025  •  LMU Department of Statistics and via zoom

Practical Causal Reasoning as a Means for Ethical ML

25.06.25, 4:15-5:45 pm: Isabel Valera, Uni Saarbrücken explores fairness in ML and introduces DeCaFlow, a causal model for counterfactuals.