Home  | Tags | #p_krahmer

#p_krahmer

BHK25

Approximating Positive Homogeneous Functions With Scale Invariant Neural Networks

Journal of Approximation Theory 311.106177. Nov. 2025

#p_heckel #p_krahmer

KPC25

On a Recovery Method With Approximation Guarantees for Noisy Unlimited Sampling

SampTA 2025

#p_krahmer

KVI+25

Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent

ICML 2025

#p_fornasier #p_krahmer

PKC25

Stable Retrieval for Unlimited Sampling via Adaptive Local Representations

SSP 2025

#p_krahmer

KKS25

How Robust Is Randomized Blind Deconvolution via Nuclear Norm Minimization Against Adversarial Noise?

Applied and Computational Harmonic Analysis 76.101746. Apr. 2025

#p_krahmer

KV25

The Mathematics of Dots and Pixels: On the Theoretical Foundations of Image Halftoning

GAMM Mitteilungen 48.1. Mar. 2025

#p_fornasier #p_krahmer

HJK+25

Non-Intrusive Surrogate Modelling Using Sparse Random Features With Applications in Crashworthiness Analysis

International Journal for Uncertainty Quantification 15.4. Mar. 2025

#p_fornasier #p_krahmer

LPC+25

Solving Inverse Problems With Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent With Weight Decay

Preprint (Feb. 2025)

#p_krahmer

HVL+24

Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning

NeurIPS 2024

#p_krahmer #p_rauhut

HVL+24a

Imaging With Confidence: Uncertainty Quantification for High-Dimensional Undersampled MR Images

ECCV 2024

#p_krahmer #p_rauhut

HVK+24

With or Without Replacement? Improving Confidence in Fourier Imaging

CoSeRa 2024

#p_krahmer #p_rauhut

PCK24

Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations

CoSeRa 2024

#p_krahmer

RK24

A One-Bit Quantization Approach for Low-Dose Poisson Phase Retrieval

CoSeRa 2024

#p_krahmer

VMK+24

Fast, Blind, and Accurate: Tuning-Free Sparse Regression With Global Linear Convergence

COLT 2024

#p_krahmer

HVL+23

Uncertainty Quantification for Learned ISTA

MLSP 2023

#p_krahmer #p_rauhut

HKV+23a

Uncertainty Quantification for Sparse Fourier Recovery

Preprint (Sep. 2023)

#p_krahmer #p_rauhut

EEN+23

In Vivo Myelin Water Quantification Using Diffusion--Relaxation Correlation MRI: A Comparison of 1D and 2D Methods

Applied Magnetic Resonance 54. Aug. 2023

#p_krahmer

FKK23

Greedy-Type Sparse Recovery From Heavy-Tailed Measurements

SampTA 2023

#p_krahmer

HKV+23

Sampling Strategies for Compressive Imaging Under Statistical Noise

SampTA 2023

#p_krahmer #p_rauhut

JKL+23

Quantization of Bandlimited Functions Using Random Samples

SampTA 2023

#p_krahmer

KLS+23

Quantization of Bandlimited Graph Signals

SampTA 2023

#p_fornasier #p_krahmer

KV23

Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation

SampTA 2023

#p_fornasier #p_krahmer

KV23a

Enhanced Digital Halftoning via Weighted Sigma-Delta Modulation

SIAM Journal on Imaging Sciences 16.3. Jul. 2023

#p_fornasier #p_krahmer

Ver22

Scalability in Ill-Posed Machine Learning Problems: Bridging Least Squares Methods With (Non-)Convex Algorithms

Dissertation TU München. Dec. 2022

#p_krahmer

VFH+21

Group Testing for SARS-CoV-2 Allows for Up to 10-Fold Efficiency Increase Across Realistic Scenarios and Testing Strategies

Frontiers in Public Health 9. Aug. 2021

#p_krahmer #p_theis
Back to Top