Home  | Tags | #p_boehm

#p_boehm

DMP+22

DBHD: Density-Based Clustering for Highly Varying Density

ICDM 2022

#p_boehm #p_seidl

LBN+22

The DipEncoder: Enforcing Multimodality in Autoencoders

KDD 2022

#p_boehm #p_seidl

LMP+22

Automatic Parameter Selection for Non-Redundant Clustering

SDM 2022

#p_boehm #p_seidl

QBP21

Density-Based Clustering for Adaptive Density Variation

ICDM 2021

#p_boehm

MBM+21

Details (Don't) Matter: Isolating Cluster Information in Deep Embedded Spaces

IJCAI 2021

#p_boehm

LBS+21

Dip-Based Deep Embedded Clustering With K-Estimation

KDD 2021

#p_boehm #p_seidl

BP20a

Massively Parallel Graph Drawing and Representation Learning

IEEE BigData 2020

#p_boehm

BP20

Massively Parallel Random Number Generation

IEEE BigData 2020

#p_boehm

PPB20

Improved Data Locality Using Morton-Order Curve on the Example of LU Decomposition

IEEE BigData 2020

#p_boehm

PBB20

Data Compression as a Comprehensive Framework for Graph Drawing and Representation Learning

KDD 2020

#p_boehm

Boe20

Space-Filling Curves for High-Performance Data Mining

Preprint (Aug. 2020)

#p_boehm

MPB20

DeepECT: The Deep Embedded Cluster Tree

Data Science and Engineering 5. Jul. 2020

#p_boehm

MYP+20

Non-Redundant Subspace Clusterings With Nr-Kmeans and Nr-DipMeans

ACM Transactions on Knowledge Discovery From Data 14.5. Jun. 2020

#p_boehm

AMB+20

Hierarchical Quick Shift Guided Recurrent Clustering

ICDE 2020

#p_boehm

MMA+20

Deep Embedded Non-Redundant Clustering

AAAI 2020

#p_boehm

MPB19

Deep Embedded Cluster Tree

ICDM 2019

#p_boehm

LMB19

Anomaly Detection in Time Series Using Generative Adversarial Networks

Workshop @ICDM 2019

#p_boehm

MYP+18

Discovering Non-Redundant K-Means Clusterings in Optimal Subspaces

KDD 2018

#p_boehm
Back to Top