is Professor for Physics-based Simulation at TU Munich.
He works in the field of computer graphics, with a particular emphasis on physics-based deep learning algorithm. One focus of his research targets the simulation of fluid phenomena, such as water and smoke. These simulations find applications as visual effects in computer generated worlds, but also in many fields of engineering. Examples of his work are novel algorithms to make simulations easier to control, to handle detailed surface tension effects, and to increase the amount of turbulent detail.
We introduce the Autoregressive PDE Emulator Benchmark (APEBench), a comprehensive benchmark suite to evaluate autoregressive neural emulators for solving partial differential equations. APEBench is based on JAX and provides a seamlessly integrated differentiable simulation framework employing efficient pseudo-spectral methods, enabling 46 distinct PDEs across 1D, 2D, and 3D. Facilitating systematic analysis and comparison of learned emulators, we propose a novel taxonomy for unrolled training and introduce a unique identifier for PDE dynamics that directly relates to the stability criteria of classical numerical methods. APEBench enables the evaluation of diverse neural architectures, and unlike existing benchmarks, its tight integration of the solver enables support for differentiable physics training and neural-hybrid emulators. Moreover, APEBench emphasizes rollout metrics to understand temporal generalization, providing insights into the long-term behavior of emulating PDE dynamics. In several experiments, we highlight the similarities between neural emulators and numerical simulators.
©all images: LMU | TUM