Home  | Research | Groups | Rinke

Research Group Patrick Rinke


Link to website at TUM

Patrick Rinke

Prof. Dr.

Principal Investigator

Patrick Rinke

is Professor for AI-based Material Science at TU Munich.

His chair is developing electronic structure and machine learning methods and applies them to pertinent problems in material science, surface science, physics, chemistry and the nano sciences.

Team members @MCML

PostDocs

Link to website

Casper Larsen

Dr.

Link to website

Matthias Stosiek

Dr.

Xiangzhou Zhu

Xiangzhou Zhu

Dr.

PhD Students

Link to website

Nitik Bhatia

Link to website

Prajwal Pisal

Recent News @MCML

Link to MCML Researchers in Highly-Ranked Journals

02.01.2025

MCML Researchers in Highly-Ranked Journals

131 Papers in 2025 Highlight Scientific Impact

Publications @MCML

2025


[12]
L. Lind • H. Sandström • P. Rinke
An interpretable molecular descriptor for machine learning predictions in atmospheric science.
Preprint (Oct. 2025). arXiv

[11]
P. Pisal • O. Krejci • P. Rinke
Machine learning accelerated descriptor design for catalyst discovery in CO2 to methanol conversion.
PSI-K 2025 - 7th PSI-K Conference. Lausanne, Switzerland, Aug 25-28, 2025. DOI

[10]
N. Bhatia • O. Krejci • S. Botti • P. Rinke • M. A. L. Marques
MACE4IR: A foundation model for molecular infrared spectroscopy.
Preprint (Aug. 2025). arXiv

[9]
J. Brean • F. Bortolussi • A. Rowell • D. C. S. Beddows • K. Weinhold • P. Mettke • M. Merkel • A. Kumar • S. Barua • S. Iyer • A. Karppinen • H. Sandström • P. Rinke • A. Wiedensohler • M. Pöhlker • M. Dal Maso • M. Rissanen • Z. Shi • R. M. Harrison
Traffic-Emitted Amines Promote New Particle Formation at Roadsides.
ACS ES&T Air 2.8. Jul. 2025. DOI

[8] Top Journal
R. R. Valiev • R. T. Nasibullin • H. Sandström • P. Rinke • K. Puolamäki • T. Kurten
Predicting intersystem crossing rate constants of alkoxy-radical pairs with structure-based descriptors and machine learning.
Physical Chemistry Chemical Physics Advance Article. Jun. 2025. DOI

[7] Top Journal
P. Pisal • O. Krejci • P. Rinke
Machine learning accelerated descriptor design for catalyst discovery in CO2 to methanol conversion.
npj Computational Materials 11.213. Jun. 2025. DOI


[5]
J. Baumsteiger • L. Celiberti • P. Rinke • M. Todorović • C. Franchini
Exploring Noncollinear Magnetic Energy Landscapes with Bayesian Optimization.
Digital Discovery 4.6. May. 2025. DOI

[4] Top Journal
H. Homm • J. Laakso • P. Rinke
Efficient dataset generation for machine learning halide perovskite alloys.
Physical Review Materials 9.053802. May. 2025. DOI

[3]
P. Henkel • J. Li • P. Rinke
Design Rules for Optimizing Quaternary Mixed-Metal Chalcohalides.
Preprint (May. 2025). arXiv

[2] Top Journal
F. Bortolussi • H. Sandström • F. Partovi • J. Mikkilä • P. Rinke • M. Rissanen
Technical note: Towards atmospheric compound identification in chemical ionization mass spectrometry with pesticide standards and machine learning.
Atmospheric Chemistry and Physics 25.1. Jan. 2025. DOI

[1] Top Journal
K. Ghosh • M. Todorović • A. Vehtari • P. Rinke
Active learning of molecular data for task-specific objectives.
The Journal of Chemical Physics 162.014103. Jan. 2025. DOI