Home  | Research | Groups | Krahmer

Research Group Felix Krahmer


Link to website at TUM

Felix Krahmer

Prof. Dr.

Principal Investigator

Felix Krahmer

is Assistant Professor of Optimization & Data Analysis at TU Munich.

His research focuses on the mathematical foundations of signal and image processing. In particular, his research agenda covers randomized sensing methods, especially in compressed sensing, dimension reduction, and analog to digital conversion. His research involves not only the theoretical analysis of such methods but also their application, such as in a project on the non-destructive testing of steel pipes.

Team members @MCML

PostDocs

Link to website

Xingchao Jian

Dr.

PhD Students

Link to website

Apostolos Evangelidis

Link to website

Hannah Laus

Recent News @MCML

Link to Research Stay at Harvard University

17.09.2025

Research Stay at Harvard University

Hannah Laus – Funded by the MCML AI X-Change Program

Link to MCML at ICML 2025

11.07.2025

MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

02.01.2025

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to MCML at NeurIPS 2024

08.12.2024

MCML at NeurIPS 2024

31 Accepted Papers (23 Main, and 8 Workshops)

Publications @MCML

2025


[25]
S. Bamberger • R. HeckelF. Krahmer
Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks.
Journal of Approximation Theory 311.106177. Nov. 2025. DOI

[24]
F. Krahmer • F. Pagginelli Patricio • P. Catala
On a Recovery Method with Approximation Guarantees for Noisy Unlimited Sampling.
SampTA 2025 - 15th International Conference on Sampling Theory and Applications. Vienna, Austria, Jul 28-Aug 01, 2025. To be published. Preprint available. URL

[23] A* Conference
S. Karnik • A. Veselovska • M. Iwen • F. Krahmer
Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[22]
F. P. Patricio • F. Krahmer • P. Catala
Stable Retrieval for Unlimited Sampling via Adaptive Local Representations.
SSP 2025 - IEEE Statistical Signal Processing Workshop. Edinburgh, Scotland, Jun 08-11, 2025. DOI

[21] Top Journal
J. Kostin • F. Krahmer • D. Stöger
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
Applied and Computational Harmonic Analysis 76.101746. Apr. 2025. DOI

[20]
F. KrahmerA. Veselovska
The mathematics of dots and pixels: On the theoretical foundations of image halftoning.
GAMM Mitteilungen 48.1. Mar. 2025. DOI

[19]
M. Herold • J. S. Jehle • F. KrahmerA. Veselovska
Non-intrusive surrogate modelling using sparse random features with applications in crashworthiness analysis.
International Journal for Uncertainty Quantification 15.4. Mar. 2025. DOI

[18]
H. Laus • S. Parkinson • V. Charisopoulos • F. Krahmer • R. Willett
Solving Inverse Problems with Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent with Weight Decay.
Preprint (Feb. 2025). arXiv

2024


[17] A* Conference
F. Hoppe • C. M. Verdun • H. LausF. KrahmerH. Rauhut
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[16] A* Conference
F. Hoppe • C. M. Verdun • H. Laus • S. Endt • M. I. Menzel • F. KrahmerH. Rauhut
Imaging with Confidence: Uncertainty Quantification for High-dimensional Undersampled MR Images.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[15]
F. Hoppe • C. M. Verdun • F. Krahmer • M. I. Menzel • H. Rauhut
With or Without Replacement? Improving Confidence in Fourier Imaging.
CoSeRa 2024 - International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging. Santiago de Compostela, Spain, Sep 18-20, 2024. DOI

[14]
F. P. Patricio • P. Catala • F. Krahmer
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations.
CoSeRa 2024 - International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging. Santiago de Compostela, Spain, Sep 18-20, 2024. DOI

[13]
P. Römer • F. Krahmer
A one-bit quantization approach for low-dose Poisson phase retrieval.
CoSeRa 2024 - International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging. Santiago de Compostela, Spain, Sep 18-20, 2024. DOI

[12] A* Conference
C. M. Verdun • O. Melnyk • F. Krahmer • P. Jung
Fast, blind, and accurate: Tuning-free sparse regression with global linear convergence.
COLT 2024 - 37th Annual Conference on Learning Theory. Edmonton, Canada, Jun 30-Jul 03, 2024. URL

2023


[11]
F. Hoppe • C. M. VerdunH. LausF. KrahmerH. Rauhut
Uncertainty Quantification For Learned ISTA.
MLSP 2023 - IEEE Workshop on Machine Learning for Signal Processing. Rome, Italy, Sep 17-20, 2023. DOI

[10]
F. Hoppe • F. KrahmerC. M. Verdun • M. I. Menzel • H. Rauhut
Uncertainty quantification for sparse Fourier recovery.
Preprint (Sep. 2023). arXiv

[9]
S. Endt • M. Engel • E. Naldi • R. Assereto • M. Molendowska • L. Mueller • C. M. Verdun • C. M. Pirkl • M. Palombo • D. K. Jones • M. I. Menzel
In vivo myelin water quantification using diffusion--relaxation correlation MRI: A comparison of 1D and 2D methods.
Applied Magnetic Resonance 54. Aug. 2023. DOI

[8]
T. Fuchs • F. Krahmer • R. Kueng
Greedy-type sparse recovery from heavy-tailed measurements.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[7]
F. Hoppe • F. KrahmerC. M. Verdun • M. I. Menzel • H. Rauhut
Sampling Strategies for Compressive Imaging Under Statistical Noise.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[6]
R. Joy • F. Krahmer • A. Lupoli • R. Ramakrishan
Quantization of Bandlimited Functions Using Random Samples.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[5]
F. Krahmer • H. Lyu • R. Saab • A. Veselovska • R. Wang
Quantization of Bandlimited Graph Signals.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[4]
F. KrahmerA. Veselovska
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[3] Top Journal
F. KrahmerA. Veselovska
Enhanced Digital Halftoning via Weighted Sigma-Delta Modulation.
SIAM Journal on Imaging Sciences 16.3. Jul. 2023. DOI


2021


[1] Top Journal
C. M. Verdun • T. Fuchs • P. Harar • D. Elbrächter • D. S. Fischer • J. Berner • P. Grohs • F. J. TheisF. Krahmer
Group Testing for SARS-CoV-2 Allows for Up to 10-Fold Efficiency Increase Across Realistic Scenarios and Testing Strategies.
Frontiers in Public Health 9. Aug. 2021. DOI