Data Analytics & Statistics
holds the Chair for Data Analytics & Statistics at TU Munich.
He is renowned for his work in machine learning approaches to machine translation, language modeling, and multilingual natural language processing. He focuses on addressing data sparsity and integrating linguistic and world knowledge in AI systems. Additionally, he collaborates with language communities to develop technology for their languages. His contributions to natural language processing and machine learning emphasize both theoretical advancements and practical applications.
The spread of harmful content online is a dynamic issue evolving over time. Existing detection models, reliant on static data, are becoming less effective and generalizable. Developing new models requires sufficient up-to-date data, which is challenging. A potential solution is to combine existing datasets with minimal new data. However, detection tasks vary—some focus on hate speech, offensive, or abusive content, which differ in the intent to harm, while others focus on identifying targets of harmful speech such as racism, sexism, etc—raising the challenge of handling nuanced class differences. To address these issues, we introduce a novel transfer learning method that leverages class-specific knowledge to enhance harmful
content detection. In our approach, we first present label-specific soft prompt tuning, which captures and represents class-level information. Secondly, we propose two approaches to transfer this fine-grained knowledge from source (existing tasks) to target (unseen and new tasks): initializing the target task prompts from source prompts and using an attention mechanism that learns and adjusts attention scores to utilize the most relevant information from source prompts. Experiments demonstrate significant improvements in harmful content detection across English and German datasets, highlighting the effectiveness of label-specific representations and knowledge transfer.
Data Analytics & Statistics
Previous work has considered token overlap, or even similarity of token distributions, as predictors for multilinguality and cross-lingual knowledge transfer in language models. However, these very literal metrics assign large distances to language pairs with different scripts, which can nevertheless show good cross-linguality. This limits the explanatory strength of token overlap for knowledge transfer between language pairs that use distinct scripts or follow different orthographic conventions. In this paper, we propose subword token alignability as a new way to understand the impact and quality of multilingual tokenisation. In particular, this metric predicts multilinguality much better when scripts are disparate and the overlap of literal tokens is low. We analyse this metric in the context of both encoder and decoder models, look at data size as a potential distractor, and discuss how this insight may be applied to multilingual tokenisation in future work. We recommend our subword token alignability metric for identifying optimal language pairs for cross-lingual transfer, as well as to guide the construction of better multilingual tokenisers in the future. We publish our code and reproducibility details.
Data Analytics & Statistics
Parallel sentence mining is crucial for downstream tasks such as Machine Translation, especially for low-resource languages, where such resources are scarce. In this context, we apply a pipeline approach with contextual embeddings on two endangered Slavic languages spoken in Germany, Upper and Lower Sorbian, to evaluate mining quality. To this end, we compare off-the-shelf multilingual language models and word encoders pre-trained on Upper Sorbian to understand their impact on sentence mining. Moreover, to filter out irrelevant pairs, we experiment with a post-processing of mined sentences through an unsupervised word aligner based on word embeddings. We observe the usefulness of additional pre-training in Upper Sorbian, which leads to direct improvements when mining the same language but also its related language, Lower Sorbian.
null
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and clean multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus built using newly extracted Common Crawl data and existing multilingual datasets. DCAD-2000 includes over 2,282 languages, 46.72TB of data, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of current data cleaning methods, which rely on manual heuristic thresholds, we propose reframing data cleaning as an anomaly detection task. This dynamic filtering approach significantly enhances data quality by identifying and removing noisy or anomalous content. We evaluate the quality of DCAD-2000 on the FineTask benchmark, demonstrating substantial improvements in multilingual dataset quality and task performance.
The capacity of large language models (LLMs) to understand and distinguish socially unacceptable texts enables them to play a promising role in abusive language detection. However, various factors can affect their sensitivity. In this work, we test whether LLMs have an unintended bias in abusive language detection, i.e., whether they predict more or less of a given abusive class than expected in zero-shot settings. Our results show that instruction-tuned LLMs tend to under-predict positive classes, since datasets used for tuning are dominated by the negative class. On the contrary, models fine-tuned with human feedback tend to be overly sensitive. In an exploratory approach to mitigate these issues, we show that label frequency in the prompt helps with the significant over-prediction.
null
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. This raises the question: To what extent can LLMs learn orthographic information? To answer this, we propose a new benchmark, CUTE, which features a collection of tasks designed to test the orthographic knowledge of LLMs. We evaluate popular LLMs on CUTE, finding that most of them seem to know the spelling of their tokens, yet fail to use this information effectively to manipulate text, calling into question how much of this knowledge is generalizable.
Data Analytics & Statistics
null
We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval. The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering. Our solutions to the subtasks are based on data acquisition and model adaptation. We compare the performance of our submitted systems with the translate-test approach which proved to be the most useful in the previous edition of the shared task. Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.
Data Analytics & Statistics
This paper describes a linguistically-motivated approach to the 2024 edition of the BabyLM Challenge (Warstadt et al. 2023). Rather than pursuing a first language learning (L1) paradigm, we approach the challenge from a second language (L2) learning perspective. In L2 learning, there is a stronger focus on learning explicit linguistic information, such as grammatical notions, definitions of words or different ways of expressing a meaning. This makes L2 learning potentially more efficient and concise. We approximate this using data from Wiktionary, grammar examples either generated by an LLM or sourced from grammar books, and paraphrase data. We find that explicit information about word meaning (in our case, Wiktionary) does not boost model performance, while grammatical information can give a small improvement. The most impactful data ingredient is sentence paraphrases, with our two best models being trained on 1) a mix of paraphrase data and data from the BabyLM pretraining dataset, and 2) exclusively paraphrase data.
Data Analytics & Statistics
Data Analytics & Statistics
Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key.
Data Analytics & Statistics
null
We present a research agenda focused on efficiently extracting, assuring quality, and consolidating textual company sustainability information to address urgent climate change decision-making needs. Starting from the goal to create integrated FAIR (Findable, Accessible, Interoperable, Reusable) climate-related data, we identify research needs pertaining to the technical aspects of information extraction as well as to the design of the integrated sustainability datasets that we seek to compile. Regarding extraction, we leverage technological advancements, particularly in large language models (LLMs) and Retrieval-Augmented Generation (RAG) pipelines, to unlock the underutilized potential of unstructured textual information contained in corporate sustainability reports. In applying these techniques, we review key challenges, which include the retrieval and extraction of CO2 emission values from PDF documents, especially from unstructured tables and graphs therein, and the validation of automatically extracted data through comparisons with human-annotated values. We also review how existing use cases and practices in climate risk analytics relate to choices of what textual information should be extracted and how it could be linked to existing structured data.
Social Data Science and AI
The interplay of cultural and linguistic elements that characterizes metaphorical language poses a substantial challenge for both human comprehension and machine processing. This challenge goes beyond monolingual settings and becomes particularly complex in translation, even more so in automatic translation. We present VOLIMET, a corpus of 2,916 parallel sentences containing gold standard alignments of metaphorical verb-object pairs and their literal paraphrases, e.g., tackle/address question, from English to German and French. On the one hand, the parallel nature of our corpus enables us to explore monolingual patterns for metaphorical vs. literal uses in English. On the other hand, we investigate different aspects of cross-lingual translations into German and French and the extent to which metaphoricity and literalness in the source language are transferred to the target languages. Monolingually, our findings reveal clear preferences in using metaphorical or literal uses of verb-object pairs. Cross-lingually, we observe a rich variability in translations as well as different behaviors for our two target languages.
Abusive language detection has drawn increasing interest in recent years. However, a less systematically explored obstacle is label imbalance, i.e., the amount of abusive data is much lower than non-abusive data, leading to performance issues. The aim of this work is to conduct a comprehensive comparative study of popular methods for addressing the class imbalance issue. We explore 10 well-known approaches on 8 datasets with distinct characteristics: binary or multi-class, moderately or largely imbalanced, focusing on various types of abuse, etc. Additionally, we pro-pose two novel methods specialized for abuse detection: AbusiveLexiconAug and ExternalDataAug, which enrich the training data using abusive lexicons and external abusive datasets, respectively. We conclude that: 1) our AbusiveLexiconAug approach, random oversampling, and focal loss are the most versatile methods on various datasets; 2) focal loss tends to yield peak model performance; 3) oversampling and focal loss provide promising results for binary datasets and small multi-class sets, while undersampling and weighted cross-entropy are more suitable for large multi-class sets; 4) most methods are sensitive to hyperparameters, yet our suggested choice of hyperparameters provides a good starting point.
Due to the broad range of social media platforms, the requirements of abusive language detection systems are varied and ever-changing. Already a large set of annotated corpora with different properties and label sets were created, such as hate or misogyny detection, but the form and targets of abusive speech are constantly evolving. Since, the annotation of new corpora is expensive, in this work we leverage datasets we already have, covering a wide range of tasks related to abusive language detection. Our goal is to build models cheaply for a new target label set and/or language, using only a few training examples of the target domain. We propose a two-step approach: first we train our model in a multitask fashion. We then carry out few-shot adaptation to the target requirements. Our experiments show that using already existing datasets and only a few-shots of the target task the performance of models improve both monolingually and across languages. Our analysis also shows that our models acquire a general understanding of abusive language, since they improve the prediction of labels which are present only in the target dataset and can benefit from knowledge about labels which are not directly used for the target task.
We empirically study the ability of a Large Language Model (gpt-3.5-turbo-instruct) to understand morphologically complex words. In our experiments, we looked at a variety of tasks to analyse German compounds with regard to compositional word formation and derivation, such as identifying the head noun of existing and novel compounds, identifying the shared verb stem between two words, or recognizing words constructed with inappropriately used derivation morphemes as invalid. Our results show that the language model is generally capable of solving most tasks, except for the task of identifying ill-formed word forms. While the model demonstrated a good overall understanding of complex words and their word-internal structure, the results also suggest that there is no formal knowledge of derivational rules, but rather an interpretation of the observed word parts to derive the meaning of a word.
Text-to-image generation models have recently achieved astonishing results in image quality, flexibility, and text alignment, and are consequently employed in a fast-growing number of applications. Through improvements in multilingual abilities, a larger community now has access to this technology. However, our results show that multilingual models suffer from significant gender biases just as monolingual models do. Furthermore, the natural expectation that multilingual models will provide similar results across languages does not hold up. Instead, there are important differences between languages. We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models. We use MAGBIG to investigate the effect of multilingualism on gender bias in T2I models. To this end, we construct multilingual prompts requesting portraits of people with a certain occupation or trait. Our results show that not only do models exhibit strong gender biases but they also behave differently across languages. Furthermore, we investigate prompt engineering strategies, such as indirect, neutral formulations, to mitigate these biases. Unfortunately, these approaches have limited success and result in worse text-to-image alignment. Consequently, we call for more research into diverse representations across languages in image generators, as well as into steerability to address biased model behavior.
Data Analytics & Statistics
This dissertation develops methods to improve natural language processing (NLP) systems for low-resource languages and diverse domains. For machine translation, it explores bilingual language models, static embeddings, and multilingual systems with adapters, achieving robust performance in low-resource settings. To enhance domain adaptation, it introduces hierarchical tree structures and efficient adapters, enabling better generalization and robustness to domain shifts. These approaches address data disparities and domain variability, advancing adaptable and efficient NLP systems. (Shortened).
Alexandra Chronopoulou
Dr.
* Former Member
We study whether linguistic information in pre-trained multilingual language models can be accessed by human language: So far, there is no easy method to directly obtain linguistic information and gain insights into the linguistic principles encoded in such models. We use the technique of prompting and formulate linguistic tasks to test the LM’s access to explicit grammatical principles and study how effective this method is at providing access to linguistic features. Our experiments on German, Icelandic and Spanish show that some linguistic properties can in fact be accessed through prompting, whereas others are harder to capture.
Data Analytics & Statistics
null
Alexandra Chronopoulou
Dr.
* Former Member
Very low-resource languages, having only a few million tokens worth of data, are not well-supported by multilingual NLP approaches due to poor quality cross-lingual word representations. Recent work showed that good crosslingual performance can be achieved if a source language is related to the low-resource target language. However, not all language pairs are related. In this paper, we propose to build multilingual word embeddings (MWEs) via a novel language chain-based approach, that incorporates intermediate related languages to bridge the gap between the distant source and target. We build MWEs one language at a time by starting from the resource rich source and sequentially adding each language in the chain till we reach the target. We extend a semi-joint bilingual approach to multiple languages in order to eliminate the main weakness of previous works, i.e., independently trained monolingual embeddings, by anchoring the target language around the multilingual space. We evaluate our method on bilingual lexicon induction for 4 language families, involving 4 very low-resource (≤ 5M tokens) and 4 moderately low-resource (≤ 50M) target languages, showing improved performance in both categories. Additionally, our analysis reveals the importance of good quality embeddings for intermediate languages as well as the importance of leveraging anchor points from all languages in the multilingual space.
null
We describe LMU Munich’s hate speech detection system for participating in the cross-domain track of the HaSpeeDe3 shared task at EVALITA 2023. The task focuses on the politics and religion domains, having no in-domain training data for the latter. Our submission combines multiple training sets from various domains in a multitask prompt-training system. We experimented with both Italian and English source datasets as well as monolingual Italian and multilingual pre-trained language models. We found that the Italian out-of-domain datasets are the most influential on the performance in the test domains and that combining both monolingual and multilingual language models using an ensemble gives the best results. Our system ranked second in both domains.
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MORALDIRECTION framework to multilingual models, comparing results in German, Czech, Arabic, Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions. We release our code and models.
Data Analytics & Statistics
Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility.
Data Analytics & Statistics
null
Alexandra Chronopoulou
Dr.
* Former Member
Pretrained language models (PLMs) are trained on massive corpora, but often need to specialize to specific domains. A parameter-efficient adaptation method suggests training an adapter for each domain on the task of language modeling. This leads to good in-domain scores but can be impractical for domain- or resource-restricted settings. A solution is to use a related-domain adapter for the novel domain at test time. In this paper, we introduce AdapterSoup, an approach that performs weight-space averaging of adapters trained on different domains. Our approach is embarrassingly parallel: first, we train a set of domain-specific adapters; then, for each novel domain, we determine which adapters should be averaged at test time. We present extensive experiments showing that AdapterSoup consistently improves performance to new domains without extra training. We also explore weight averaging of adapters trained on the same domain with different hyper-parameters, and show that it preserves the performance of a PLM on new domains while obtaining strong in-domain results. We explore various approaches for choosing which adapters to combine, such as text clustering and semantic similarity. We find that using clustering leads to the most competitive results on novel domains.
Alexandra Chronopoulou
Dr.
* Former Member
Large multilingual models trained with self-supervision achieve state-of-the-art results in a wide range of natural language processing tasks. Self-supervised pretrained models are often fine-tuned on parallel data from one or multiple language pairs for machine translation. Multilingual fine-tuning improves performance on low-resource languages but requires modifying the entire model and can be prohibitively expensive. Training a new adapter on each language pair or training a single adapter on all language pairs without updating the pretrained model has been proposed as a parameter-efficient alternative. However, the former does not permit any sharing between languages, while the latter shares parameters for all languages and is susceptible to negative interference. In this paper, we propose training language-family adapters on top of mBART-50 to facilitate cross-lingual transfer. Our approach outperforms related baselines, yielding higher translation scores on average when translating from English to 17 different low-resource languages. We also show that language-family adapters provide an effective method to translate to languages unseen during pretraining.
Alexandra Chronopoulou
Dr.
* Former Member
Pre-trained multilingual language models are the foundation of many NLP approaches, including cross-lingual transfer solutions. However, languages with small available monolingual corpora are often not well-supported by these models leading to poor performance. We propose an unsupervised approach to improve the cross-lingual representations of low-resource languages by bootstrapping word translation pairs from monolingual corpora and using them to improve language alignment in pre-trained language models. We perform experiments on nine languages, using contextual word retrieval and zero-shot named entity recognition to measure both intrinsic cross-lingual word representation quality and downstream task performance, showing improvements on both tasks. Our results show that it is possible to improve pre-trained multilingual language models by relying only on non-parallel resources.
null
Alexandra Chronopoulou
Dr.
* Former Member
Contextualized word embeddings have emerged as the most important tool for performing NLP tasks in a large variety of languages. In order to improve the cross-lingual representation and transfer learning quality, contextualized embedding alignment techniques, such as mapping and model fine-tuning, are employed. Existing techniques however are time-, data- and computational resource-intensive. In this paper we analyze these techniques by utilizing three tasks: bilingual lexicon induction (BLI), word retrieval and cross-lingual natural language inference (XNLI) for a high resource (German-English) and a low resource (Bengali-English) language pair. In contrast to previous works which focus only on a few popular models, we compare five multilingual and seven monolingual language models and investigate the effect of various aspects on their performance, such as vocabulary size, number of languages used for training and number of parameters. Additionally, we propose a parameter-, data- and runtime-efficient technique which can be trained with 10% of the data, less than 10% of the time and have less than 5% of the trainable parameters compared to model fine-tuning. We show that our proposed method is competitive with resource heavy models, even outperforming them in some cases, even though it relies on less resource.
Bilingual Word Embeddings (BWEs) are one of the cornerstones of cross-lingual transfer of NLP models. They can be built using only monolingual corpora without supervision leading to numerous works focusing on unsupervised BWEs. However, most of the current approaches to build unsupervised BWEs do not compare their results with methods based on easy-to-access cross-lingual signals. In this paper, we argue that such signals should always be considered when developing unsupervised BWE methods. The two approaches we find most effective are: 1) using identical words as seed lexicons (which unsupervised approaches incorrectly assume are not available for orthographically distinct language pairs) and 2) combining such lexicons with pairs extracted by matching romanized versions of words with an edit distance threshold. We experiment on thirteen non-Latin languages (and English) and show that such cheap signals work well and that they outperform using more complex unsupervised methods on distant language pairs such as Chinese, Japanese, Kannada, Tamil, and Thai. In addition, they are even competitive with the use of high-quality lexicons in supervised approaches. Our results show that these training signals should not be neglected when building BWEs, even for distant languages.
©all images: LMU | TUM
2024-12-27 - Last modified: 2024-12-27