His research focuses on reliable and data-efficient AI approaches leveraging Bayesian deep learning, deep generative modeling, meta-learning, and PAC-Bayesian theory.
T. Rochussen • V. Fortuin Sparse Gaussian Neural Processes. AABI 2025 - 7th Symposium on Advances in Approximate Bayesian Inference collocated with the 13th International Conference on Learning Representations. Singapore, Apr 29, 2025. To be published. Preprint available.
arXiv
[8]
A. Reuter • T. G. J. Rudner • V. Fortuin • D. Rügamer Can Transformers Learn Full Bayesian Inference in Context? FPI @ICLR 2025 - Workshop on Frontiers in Probabilistic Inference: Learning meets Sampling at the 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025.
arXivURL
[7]
A. Reuter • T. G. J. Rudner • V. Fortuin • D. Rügamer Can Transformers Learn Full Bayesian Inference in Context? SynthData @ICLR 2025 - Workshop SynthData: Will Synthetic Data Finally Solve the Data Access Problem? at the 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025.
URL
T. Papamarkou • M. Skoularidou • K. Palla • L. Aitchison • J. Arbel • D. Dunson • M. Filippone • V. Fortuin • P. Hennig • J. M. Hernández-Lobato • A. Hubin • A. Immer • T. Karaletsos • M. E. Khan • A. Kristiadi • Y. Li • S. Mandt • C. Nemeth • M. A. Osborne • T. G. J. Rudner • D. Rügamer • Y. W. Teh • M. Welling • A. G. Wilson • R. Zhang Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI. ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024.
URL