Home  | Research | Groups | Fortuin

Research Group Vincent Fortuin


Link to website at TUM

Vincent Fortuin

Dr.

Associate

Vincent Fortuin

His research focuses on reliable and data-efficient AI approaches leveraging Bayesian deep learning, deep generative modeling, meta-learning, and PAC-Bayesian theory.

Team members @MCML

PostDocs

Link to website

James Odgers

Dr.

PhD Students

Link to website

Blagovest Gospodinov

Link to website

Ben Riegler

Link to website

Thomas Rochussen

Link to website

Annika Schneider

Link to website

Arsen Sheverdin

Recent News @MCML

Link to MCML at ICML 2025

11.07.2025

MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

Link to MCML at ICLR 2025

22.04.2025

MCML at ICLR 2025

52 Accepted Papers (35 Main, and 17 Workshops)

Link to MCML at NeurIPS 2024

08.12.2024

MCML at NeurIPS 2024

31 Accepted Papers (23 Main, and 8 Workshops)

Link to MCML at ICML 2024

19.07.2024

MCML at ICML 2024

24 Accepted Papers (17 Main, and 7 Workshops)

Publications @MCML

2025


[11] A* Conference
M. Kmicikiewicz • V. Fortuin • E. Szczurek
ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods.
NeurIPS 2025 - 39th Conference on Neural Information Processing Systems. San Diego, CA, USA, Nov 30-Dec 07, 2025. To be published. Preprint available. URL

[10] A* Conference
A. Reuter • T. G. J. Rudner • V. FortuinD. Rügamer
Can Transformers Learn Full Bayesian Inference in Context?
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[9]
T. Rochussen • V. Fortuin
Sparse Gaussian Neural Processes.
AABI 2025 - 7th Symposium on Advances in Approximate Bayesian Inference collocated with the 13th International Conference on Learning Representations. Singapore, Apr 29, 2025. To be published. Preprint available. arXiv

[8]
A. Reuter • T. G. J. Rudner • V. FortuinD. Rügamer
Can Transformers Learn Full Bayesian Inference in Context?
FPI @ICLR 2025 - Workshop on Frontiers in Probabilistic Inference: Learning meets Sampling at the 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. arXiv URL

[7]
A. Reuter • T. G. J. Rudner • V. FortuinD. Rügamer
Can Transformers Learn Full Bayesian Inference in Context?
SynthData @ICLR 2025 - Workshop SynthData: Will Synthetic Data Finally Solve the Data Access Problem? at the 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL

2024


[6] A* Conference
R. Dhahri • A. Immer • B. Charpentier • S. GünnemannV. Fortuin
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[5]
K. Flöge • M. A. Moeed • V. Fortuin
Stein Variational Newton Neural Network Ensembles.
Preprint (Nov. 2024). arXiv

[4]
K. Flöge • S. Udayakumar • J. Sommer • M. Piraud • S. Kesselheim • V. Fortuin • S. Günneman • K. J. van der Weg • H. Gohlke • E. Merdivan • A. Bazarova
OneProt: Towards Multi-Modal Protein Foundation Models.
Preprint (Nov. 2024). arXiv

[3] A* Conference
K. Bouchiat • A. Immer • H. Yèche • G. Ratsch • V. Fortuin
Improving Neural Additive Models with Bayesian Principles.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

[2] A* Conference
T. Papamarkou • M. Skoularidou • K. Palla • L. Aitchison • J. Arbel • D. Dunson • M. Filippone • V. Fortuin • P. Hennig • J. M. Hernández-Lobato • A. Hubin • A. Immer • T. Karaletsos • M. E. Khan • A. Kristiadi • Y. Li • S. Mandt • C. Nemeth • M. A. Osborne • T. G. J. Rudner • D. Rügamer • Y. W. Teh • M. Welling • A. G. Wilson • R. Zhang
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

[1]
F. Sergeev • P. Malsot • G. Rätsch • V. Fortuin
Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information.
Preprint (Jul. 2024). arXiv