holds the Chair of Applied Numerical Analysis at TU Munich.
His embraces a broad spectrum of problems in mathematical modeling, analysis and numerical analysis. He is particularly interested in the concept of compression as appearing in different forms in data analysis, image and signal processing, and in the adaptive numerical solutions of partial differential equations or high-dimensional optimization problems.
The connection between Residual Neural Networks (ResNets) and continuous-time control systems (known as NeurODEs) has led to a mathematical analysis of neural networks, which has provided interesting results of both theoretical and practical significance. However, by construction, NeurODEs have been limited to describing constant-width layers, making them unsuitable for modelling deep learning architectures with layers of variable width. In this paper, we propose a continuous-time Autoencoder, which we call AutoencODE, based on a modification of the controlled field that drives the dynamics. This adaptation enables the extension of the mean-field control framework originally devised for conventional NeurODEs. In this setting, we tackle the case of low Tikhonov regularisation, resulting in potentially non-convex cost landscapes. While the global results obtained for high Tikhonov regularisation may not hold globally, we show that many of them can be recovered in regions where the loss function is locally convex. Inspired by our theoretical findings, we develop a training method tailored to this specific type of Autoencoders with residual connections, and we validate our approach through numerical experiments conducted on various examples.