Home | Research | Groups | Matthias Feurer

Research Group Matthias Feurer

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Thomas Bayes Fellow

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Matthias Feurer

is a Thomas Bayes Fellow of MCML and Interim Professor at the Chair of Statistical Learning and Data Science at LMU Munich.

His research focuses on simplifying machine learning for both domain scientists and expert users by developing tools and methods within Automated Machine Learning (AutoML), covering hyperparameter optimization, meta-learning, and model selection. He prioritizes multi-objective AutoML to address goals beyond predictive performance, such as interpretability, deployability, and fairness, and contribute to open-source AutoML projects, including co-founding the Open Machine Learning Foundation.

Publications @MCML

[9]
T. Nagler, L. Schneider, B. Bischl and M. Feurer.
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization.
38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver, Canada, Dec 10-15, 2024. To be published. Preprint at arXiv. arXiv. GitHub.
Abstract

Hyperparameter optimization is crucial for obtaining peak performance of machine learning models. The standard protocol evaluates various hyperparameter configurations using a resampling estimate of the generalization error to guide optimization and select a final hyperparameter configuration. Without much evidence, paired resampling splits, i.e., either a fixed train-validation split or a fixed cross-validation scheme, are often recommended. We show that, surprisingly, reshuffling the splits for every configuration often improves the final model's generalization performance on unseen data. Our theoretical analysis explains how reshuffling affects the asymptotic behavior of the validation loss surface and provides a bound on the expected regret in the limiting regime. This bound connects the potential benefits of reshuffling to the signal and noise characteristics of the underlying optimization problem. We confirm our theoretical results in a controlled simulation study and demonstrate the practical usefulness of reshuffling in a large-scale, realistic hyperparameter optimization experiment. While reshuffling leads to test performances that are competitive with using fixed splits, it drastically improves results for a single train-validation holdout protocol and can often make holdout become competitive with standard CV while being computationally cheaper.

MCML Authors
Link to Thomas Nagler

Thomas Nagler

Prof. Dr.

Computational Statistics & Data Science

A1 | Statistical Foundations & Explainability

Link to Lennart Schneider

Lennart Schneider

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[8]
E. Bergman, M. Feurer, A. Bahram, A. R. Balef, L. Purucker, S. Segel, M. Lindauer, F. Hutter and K. Eggensperger.
AMLTK: A Modular AutoML Toolkit in Python.
The Journal of Open Source Software 9.100 (Aug. 2024). DOI.
Abstract

Machine Learning is a core building block in novel data-driven applications. Practitioners face many ambiguous design decisions while developing practical machine learning (ML) solutions. Automated machine learning (AutoML) facilitates the development of machine learning applications by providing efficient methods for optimizing hyperparameters, searching for neural architectures, or constructing whole ML pipelines (Hutter et al., 2019). Thereby, design decisions such as the choice of modelling, pre-processing, and training algorithm are crucial to obtaining well-performing solutions. By automatically obtaining ML solutions, AutoML aims to lower the barrier to leveraging machine learning and reduce the time needed to develop or adapt ML solutions for new domains or data.Highly performant software packages for automatically building ML pipelines given data, so-called AutoML systems, are available and can be used off-the-shelf. Typically, AutoML systems evaluate ML models sequentially to return a well-performing single best model or multiple models combined into an ensemble. Existing AutoML systems are typically highly engineered monolithic software developed for specific use cases to perform well and robustly under various conditions...

MCML Authors
Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[7]
M. Herrmann, F. J. D. Lange, K. Eggensperger, G. Casalicchio, M. Wever, M. Feurer, D. Rügamer, E. Hüllermeier, A.-L. Boulesteix and B. Bischl.
Position: Why We Must Rethink Empirical Research in Machine Learning.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024. URL.
Abstract

We warn against a common but incomplete understanding of empirical research in machine learning (ML) that leads to non-replicable results, makes findings unreliable, and threatens to undermine progress in the field. To overcome this alarming situation, we call for more awareness of the plurality of ways of gaining knowledge experimentally but also of some epistemic limitations. In particular, we argue most current empirical ML research is fashioned as confirmatory research while it should rather be considered exploratory.

MCML Authors
Link to Moritz Herrmann

Moritz Herrmann

Dr.

Biometry in Molecular Medicine

Coordinator for Reproducibility & Open Science

A1 | Statistical Foundations & Explainability

Link to Giuseppe Casalicchio

Giuseppe Casalicchio

Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Marcel Wever

Marcel Wever

Dr.

* Former member

A3 | Computational Models

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

A1 | Statistical Foundations & Explainability

Link to Eyke Hüllermeier

Eyke Hüllermeier

Prof. Dr.

Artificial Intelligence & Machine Learning

A3 | Computational Models

Link to Anne-Laure Boulesteix

Anne-Laure Boulesteix

Prof. Dr.

Biometry in Molecular Medicine

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[6]
M. Lindauer, F. Karl, A. Klier, J. Moosbauer, A. Tornede, A. C. Mueller, F. Hutter, M. Feurer and B. Bischl.
Position: A Call to Action for a Human-Centered AutoML Paradigm.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024. URL.
Abstract

Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML) workflows, aiding the research of new ML algorithms, and contributing to the democratization of ML by making it accessible to a broader audience. Over the past decade, commendable achievements in AutoML have primarily focused on optimizing predictive performance. This focused progress, while substantial, raises questions about how well AutoML has met its broader, original goals. In this position paper, we argue that a key to unlocking AutoML’s full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems, including their diverse roles, expectations, and expertise. We envision a more human-centered approach in future AutoML research, promoting the collaborative design of ML systems that tightly integrates the complementary strengths of human expertise and AutoML methodologies.

MCML Authors
Link to Florian Karl

Florian Karl

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Julia Moosbauer

Julia Moosbauer

Dr.

* Former member

A1 | Statistical Foundations & Explainability

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[5]
D. Rundel, J. Kobialka, C. von Crailsheim, M. Feurer, T. Nagler and D. Rügamer.
Interpretable Machine Learning for TabPFN.
2nd World Conference on Explainable Artificial Intelligence (xAI 2024). Valletta, Malta, Jul 17-19, 2024. DOI. GitHub.
Abstract

The recently developed Prior-Data Fitted Networks (PFNs) have shown very promising results for applications in low-data regimes. The TabPFN model, a special case of PFNs for tabular data, is able to achieve state-of-the-art performance on a variety of classification tasks while producing posterior predictive distributions in mere seconds by in-context learning without the need for learning parameters or hyperparameter tuning. This makes TabPFN a very attractive option for a wide range of domain applications. However, a major drawback of the method is its lack of interpretability. Therefore, we propose several adaptations of popular interpretability methods that we specifically design for TabPFN. By taking advantage of the unique properties of the model, our adaptations allow for more efficient computations than existing implementations. In particular, we show how in-context learning facilitates the estimation of Shapley values by avoiding approximate retraining and enables the use of Leave-One-Covariate-Out (LOCO) even when working with large-scale Transformers. In addition, we demonstrate how data valuation methods can be used to address scalability challenges of TabPFN.

MCML Authors
Link to David Rundel

David Rundel

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Julius Kobialka

Julius Kobialka

Data Science Group

A1 | Statistical Foundations & Explainability

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Thomas Nagler

Thomas Nagler

Prof. Dr.

Computational Statistics & Data Science

A1 | Statistical Foundations & Explainability

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

A1 | Statistical Foundations & Explainability


[4]
R. Kohli, M. Feurer, B. Bischl, K. Eggensperger and F. Hutter.
Towards Quantifying the Effect of Datasets for Benchmarking: A Look at Tabular Machine Learning.
Workshop on Data-centric Machine Learning Research (DMLR 2024) at the 12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024. URL.
Abstract

Data in tabular form makes up a large part of real-world ML applications, and thus, there has been a strong interest in developing novel deep learning (DL) architectures for supervised learning on tabular data in recent years. As a result, there is a debate as to whether DL methods are superior to the ubiquitous ensembles of boosted decision trees. Typically, the advantage of one model class over the other is claimed based on an empirical evaluation, where different variations of both model classes are compared on a set of benchmark datasets that supposedly resemble relevant real-world tabular data. While the landscape of state-of- the-art models for tabular data changed, one factor has remained largely constant over the years: The datasets. Here, we examine 30 recent publications and 187 different datasets they use, in terms of age, study size and relevance. We found that the average study used less than 10 datasets and that half of the datasets are older than 20 years. Our insights raise questions about the conclusions drawn from previous studies and urge the research community to develop and publish additional recent, challenging and relevant datasets and ML tasks for supervised learning on tabular data.

MCML Authors
Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[3]
H. Weerts, F. Pfisterer, M. Feurer, K. Eggensperger, E. Bergman, N. Awad, J. Vanschoren, M. Pechenizkiy, B. Bischl and F. Hutter.
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML.
Journal of Artificial Intelligence Research 79 (Feb 17, 2024). DOI.
MCML Authors
Link to Florian Pfisterer

Florian Pfisterer

Dr.

* Former member

A1 | Statistical Foundations & Explainability

Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[2]
S. F. Fischer, L. Harutyunyan, M. Feurer and B. Bischl.
OpenML-CTR23 - A curated tabular regression benchmarking suite.
International Conference on Automated Machine Learning (AutoML 2023) - Workshop Track. Berlin, Germany, Sep 12-15, 2023. URL.
MCML Authors
Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability


[1]
M. Feurer, K. Eggensperger, E. Bergman, F. Pfisterer, B. Bischl and F. Hutter.
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives.
21st International Symposium on Intelligent Data Analysis (IDA 2023). Louvain-la-Neuve, Belgium, Apr 12-14, 2023. DOI.
MCML Authors
Link to Matthias Feurer

Matthias Feurer

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability

Link to Florian Pfisterer

Florian Pfisterer

Dr.

* Former member

A1 | Statistical Foundations & Explainability

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

A1 | Statistical Foundations & Explainability