Home  | Research | Groups | Bauer s

Research Group Stefan Bauer


Link to website at TUM PI Matchmaking

Stefan Bauer

Prof. Dr.

Principal Investigator

Stefan Bauer

is an Associate Professor of Algorithmic Machine Learning & Explainable AI at TU Munich and senior PI at Helmholtz AI.

He works on developing algorithms that learn causal relationships from high-dimensional inputs, explain their decisions, and adapt quickly to new problems. All these requirements are key prerequisites for robust and transformative AI-based technologies with various downstream applications.

Team members @MCML

PostDocs

Link to website

Andrea Dittadi

Dr.

PhD Students

Link to website

Emmanouil Angelis

Vincent Pauline

Recent News @MCML

Link to MCML at ICML 2025

11.07.2025

MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

02.01.2025

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to MCML at NeurIPS 2024

08.12.2024

MCML at NeurIPS 2024

31 Accepted Papers (23 Main, and 8 Workshops)

Link to Several MCML PIs Receive BMBF Funding

18.11.2024

Several MCML PIs Receive BMBF Funding

Funding of Two New Joint Projects

Publications @MCML

2025


[5] A* Conference
A. Uselis • A. Dittadi • S. J. Oh
Does Data Scaling Lead to Visual Compositional Generalization?
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL GitHub

[4] Top Journal
A. Tejada-Lapuerta • P. Bertin • S. Bauer • H. Aliee • Y. Bengio • F. J. Theis
Causal machine learning for single-cell genomics.
Nature Genetics. Mar. 2025. DOI

[3]
P. Bertin • J. D. Viviano • A. Tejada-Lapuerta • W. Wang • S. BauerF. J. Theis • Y. Bengio
A scalable gene network model of regulatory dynamics in single cells.
Preprint (Mar. 2025). arXiv

[2] Top Journal
T. Willem • V. A. Shitov • M. D. Luecken • N. KilbertusS. Bauer • M. Piraud • A. Buyx • F. J. Theis
Biases in machine-learning models of human single-cell data.
Nature Cell Biology. Feb. 2025. DOI

2024


[1]
B. M. G. Nielsen • L. Gresele • A. Dittadi
Challenges in Explaining Representational Similarity through Identifiability.
UniReps @NeurIPS 2024 - 2nd Workshop on Unifying Representations in Neural Models at the 37th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL