Conversational AI tools for generating and discussing accurate radiology reports could transform radiology by enabling collaborative, human-in-the-loop diagnostic processes, saving time and enhancing report quality. While, to this end, Large Vision-Language Models hold promise, current methods lack clinical correctness or are single-task models without conversational abilities. We propose a novel architecture and dataset to address these limitations. First, we propose a secondary image branch, explicitly focusing on structured clinical findings, improving the clinical correctness score by 13.3%. Second, we propose a catastrophic forgetting mitigation strategy and instruct dataset with variable dialog-based tasks, to enable our model to handle a multitude of different queries. RaDialog marks a foundational step toward clinical dialog systems, outperforming existing medical LVLMs by 15.0% in clinical correctness in report generation, 23.4% in interactive report correction, and is preferred by radiologists in 84.0% of cases over a comparative method.
inproceedings
BibTeXKey: POP+25