Home  | Publications | DHA+25

Persistent Personas? Role-Playing, Instruction Following, and Safety in Extended Interactions

MCML Authors

Link to Profile Michael Hedderich PI Matchmaking

Michael Hedderich

Dr.

JRG Leader Human-Centered NLP

Link to Profile Hinrich Schütze PI Matchmaking

Hinrich Schütze

Prof. Dr.

Principal Investigator

Abstract

Persona-assigned large language models (LLMs) are used in domains such as education, healthcare, and sociodemographic simulation. Yet, they are typically evaluated only in short, single-round settings that do not reflect real-world usage. We introduce an evaluation protocol that combines long persona dialogues (over 100 rounds) and evaluation datasets to create dialogue-conditioned benchmarks that can robustly measure long-context effects. We then investigate the effects of dialogue length on persona fidelity, instruction-following, and safety of seven state-of-the-art open- and closed-weight LLMs. We find that persona fidelity degrades over the course of dialogues, especially in goal-oriented conversations, where models must sustain both persona fidelity and instruction following. We identify a trade-off between fidelity and instruction following, with non-persona baselines initially outperforming persona-assigned models; as dialogues progress and fidelity fades, persona responses become increasingly similar to baseline responses. Our findings highlight the fragility of persona applications in extended interactions and our work provides a protocol to systematically measure such failures.

misc DHA+25


Preprint

Dec. 2025

Authors

P. H. L. de Araujo • M. A. HedderichA. ModarressiH. Schütze • B. Roth

Links

arXiv

Research Area

 B2 | Natural Language Processing

BibTeXKey: DHA+25

Back to Top