10.04.2022

Teaser image to

MCML Researchers With One Paper at ICLR 2022

10th International Conference on Learning Representations (ICLR 2022). Virtual, 25.04.2022–29.04.2022

We are happy to announce that MCML researchers are represented with one paper at ICLR 2022. Congrats to our researchers!

Main Track (1 papers)

D. Alivanistos, M. Berrendorf, M. Cochez and M. Galkin.
Query Embedding on Hyper-Relational Knowledge Graphs.
ICLR 2022 - 10th International Conference on Learning Representations. Virtual, Apr 25-29, 2022. URL GitHub
Abstract

Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

MCML Authors
Max Berrendorf

Max Berrendorf

Dr.

* Former Member


10.04.2022


Subscribe to RSS News feed

Related

Link to When Clinical Expertise Meets AI Innovation – with Michael Ingrisch

25.06.2025

When Clinical Expertise Meets AI Innovation – With Michael Ingrisch

The new research film features Michael Ingrisch, who shows how AI and clinical expertise can solve real challenges in radiology together.

Link to Autonomous Driving: From Infinite Possibilities to Safe Decisions— with Matthias Althoff

23.06.2025

Autonomous Driving: From Infinite Possibilities to Safe Decisions— With Matthias Althoff

The new research film features Matthias Althoff explaining how his team verifies autonomous vehicle safety using EDGAR and rigorous testing.

Link to ERC Advanced Grant for Massimo Fornasier

20.06.2025

ERC Advanced Grant for Massimo Fornasier

Massimo Fornasier was awarded ERC Advanced Grant to develop advanced algorithms for solving complex nonconvex optimization problems.

Link to ERC Advanced Grant for Albrecht Schmidt

18.06.2025

ERC Advanced Grant for Albrecht Schmidt

Albrecht Schmidt receives ERC Advanced Grant for research on personalized generative AI to support memory, planning, and creativity.

Link to Better Data, Smarter AI: Why Quality Matters – with Frauke Kreuter

11.06.2025

Better Data, Smarter AI: Why Quality Matters – With Frauke Kreuter

In our new research film, Frauke Kreuter explains how data quality shapes fair, reliable, and socially responsible AI systems.