29.07.2020

©master1305 - stock.adobe.com
MCML - Virtual Workshop
Over 20 Presentations by Our PhD Students on Current Research Topics
The workshop includes presentations on Spatial and Temporal Machine Learning & Computer Vision, Learning on Graphs and Networks & Representation Learning, and Automatic and Explainable Modeling & Computational Models for Large-Sclae ML.
Agenda
| | | | |—–|———–|—-| |14:00–
14:20| |Prof. Dr. Thomas Seidl, Prof. Dr. Daniel Cremers
Welcome Greeting
|
Track 1: Spatial and Temporal Machine Learning & Computer Vision
| | | | |—–|———–|—-| |14:20–
14:40| |Ashkan Khakzar, Azade Farshad / Prof. Dr. Nassir Navab
Machine Learning at CAMP: Interpretability and Spatio-temporal Learning for Medical Imaging
| |14:40–
15:00||Christopher Küster / Prof. Dr. Volker Schmid
Bayesian image segmentation with hierarchical Potts models
| |15:00–
15:20||Prof. Dr. Matthias Schubert
Resource Search in Data Driven Environments
| |15:20–
15:40||Guillem Brasó / Prof. Dr. Laura Leal-Taixé
Learning a neural solver for multi-object tracking
| |15:40–
16:00||Yuesong Shen / Prof. Dr. Daniel Cremers
Deep learning: a non-alchemical view
| |16:00–
16:20||Vladimir Golkov, / Prof. Dr. Daniel Cremers
Equivariant Deep Learning
| |16:20–
16:40||Andrei Burov / Prof. Dr. Matthias Niessner
Learning to Optimize for Human Reconstructions
|
Track 2: Learning on Graphs and Networks & Representation Learning
| | | | |—–|———–|—-| |14:20–
14:40| |Daniel Zügner / Prof. Dr. Stephan Günnemann
Robust deep learning on graphs
| |14:40–
15:00||Cornelius Fritz, Marc Schneble, Sevag Kevork / Prof. Dr. Göran Kauermann
Applied Network Science
| |15:00–
15:20||Max Berrendorf / Prof. Dr. Volker Tresp
Knowledge Graph Matching
| |15:20–
15:40||Alex Markham / Prof. Dr. Moritz Grosse-Wentrup
Measurement Dependence Inducing Latent Causal Models
| |15:40–
16:00||Nora Kassner / Prof. Dr. Hinrich Schütze
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly
| |16:00–
16:20||Mohammad Lotfollahi / Prof. Dr. Dr. Fabian Theis
Query to reference single-cell integration with transfer learning
| |16:20–
16:40||Marius Lange / Prof. Dr. Dr. Fabian Theis
Mapping the fate of single cells with RNA velocity using CellRank
|
Track 3: Automatic and Explainable Modeling & Computational Models for Large-Sclae ML
| | | | |—–|———–|—-| |14:20–
14:40| |Dr. David Ruegamer / Prof. Dr. Bernd Bischl
Semi-Structured Deep Distributional Regression
| |14:40–
15:00||Julia Moosbauer, Martin Binder / Prof. Dr. Bernd Bischl
Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles
| |15:00–
15:20||Theresa Ullmann, Christina Nießl / Prof. Dr. Anne-Laure Boulesteix
Cluster Analysis and Feature Rankings: Validation, benchmarking and over-optimism concerns
| |15:20–
15:40||Moritz Herrmann / PD Dr. Fabian Scheipl
Finding and evaluating embeddings for functional data
| |15:40–
16:00||Li Qian / Prof. Dr. Christian Böhm
Clustering Large-Scaled Datasets using Deep Learning
| |16:00–
16:20||Anna Beer / Prof. Dr. Peer Kröger
Evaluation of Results from Unsupervised Learning Processes
| |16:20–
16:40||Daniyal Kazempour / Prof. Dr. Thomas Seidl
Recent Advances in Correlation Clustering
| |16:40–
17:00||Sandra Obermeier / Prof. Dr. Thomas Seidl
Active Learning - Diversity vs. Uncertainty Sampling
|
| | | | |—–|———–|—-| |17:00–
17:30| |Prof. Dr. Bernd Bischl
Closing Remarks
|
29.07.2020
Related

25.07.2025
MCML Stammtisch - Recap
Great conversations, new connections, pizza and drinks at yesterday’s MCML Stammtisch where members met to share ideas and unwind together.

25.07.2025
Industry Pitch Talks Recap
On July 22nd at SAP Labs in Garching, MCML researchers and SAP presented work on agentic AI, energy efficiency, and uncertainty in machine learning.

14.07.2025
MCML's Delegation Visit to the USA
MCML delegation visited top U.S. universities to advance AI X-Change and foster collaboration in generative and medical AI.

©MCML
09.07.2025
Entrepreneurship Insights at MCMLMunich AI Day
MCML AI Day featured a masterclass on entrepreneurship with insights from LMU IEC and TUM Venture Labs on startups, pitching, and resilience.