Home  | News

07.07.2025

Teaser image to How Neural Networks Are Changing Medical Imaging – with Reinhard Heckel

How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel

Research Film

Clear imaging is essential for accurate diagnosis — but when it comes to the heart, motion makes it one of the most difficult organs to capture in high resolution. Traditional reconstruction methods often struggle to deliver the detail clinicians need.

«Deep neural networks can improve the clarity and diagnostic value by giving much sharper and higher resolution images from measurements where classical methods just don’t do as well.»


Reinhard Heckel

MCML PI

Reinhard Heckel, Professor of Machine Learning at TUM and MCML PI, is using deep neural networks to change that. His team is developing methods that reconstruct sharper, more detailed images from limited or noisy measurements — even when the subject is moving.

«The data is really what makes the difference between a well-performing method that is robust and reliable, and a method that is just going to work on a handful of patients.»


Reinhard Heckel

MCML PI

A key focus of his research is data: how to source it, how to ensure it’s diverse, and how to train robust models that generalize across patient populations.

This work is paving the way for more accurate imaging tools that can help detect pathologies that might otherwise go unnoticed.

This video is part of our MCML spotlight series on researchers driving real-world impact with AI.

Watch in Full Quality on YouTube

The film was produced and edited by Nicole Huminski and Nikolai Huber.

 

#blog #research #heckel
Subscribe to RSS News feed

Related

Link to Research on human-centred Exosuit technology highlighted in Börsen-Zeitung

03.11.2025

Research on Human-Centred Exosuit Technology Highlighted in Börsen-Zeitung

Julian Rodemann worked with Harvard on interpretable algorithms for “Back Exosuits,” improving human–machine interaction.

Link to

02.11.2025

MCML at EMNLP 2025

MCML researchers are represented with 37 papers at EMNLP 2025 (17 Main, 13 Findings, and 7 Workshops).

Link to Language Shapes Gender Bias in AI Images

30.10.2025

Language Shapes Gender Bias in AI Images

Alexander Fraser shows AI image generators reproduce gender stereotypes differently across languages, highlighting the need for fair multilingual AI.

Link to Barbara Plank Featured on ARD

26.10.2025

Barbara Plank Featured on ARD

MCML PI Barbara Plank featured on ARD, highlighting AI challenges in understanding regional dialects.

Link to Unai Fischer-Abaigar Featured on Executive Code

26.10.2025

Unai Fischer-Abaigar Featured on Executive Code

MCML Junior Member Unai Fischer-Abaigar featured on Executive Code, exploring AI in government resource allocation and public program outcomes.

Back to Top