07.07.2025
How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel
Research Film
Clear imaging is essential for accurate diagnosis — but when it comes to the heart, motion makes it one of the most difficult organs to capture in high resolution. Traditional reconstruction methods often struggle to deliver the detail clinicians need.
«Deep neural networks can improve the clarity and diagnostic value by giving much sharper and higher resolution images from measurements where classical methods just don’t do as well.»
Reinhard Heckel
MCML PI
Reinhard Heckel, Professor of Machine Learning at TUM and MCML PI, is using deep neural networks to change that. His team is developing methods that reconstruct sharper, more detailed images from limited or noisy measurements — even when the subject is moving.
«The data is really what makes the difference between a well-performing method that is robust and reliable, and a method that is just going to work on a handful of patients.»
Reinhard Heckel
MCML PI
A key focus of his research is data: how to source it, how to ensure it’s diverse, and how to train robust models that generalize across patient populations.
This work is paving the way for more accurate imaging tools that can help detect pathologies that might otherwise go unnoticed.
This video is part of our MCML spotlight series on researchers driving real-world impact with AI.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
Related
16.12.2025
Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine
MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.
16.12.2025
Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics
Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.
16.12.2025
Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches
Hinrich Schütze discusses Giotto.ai’s efficient AI models, highlighting memory separation and context-aware decoding to improve robustness.
16.12.2025
Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas
Xiaoxiang Zhu maps 2.75B buildings in 3D, revealing global urbanization, housing, and social inequalities using AI.