Home  | News

07.07.2025

Teaser image to How Neural Networks Are Changing Medical Imaging – with Reinhard Heckel

How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel

Research Film

Clear imaging is essential for accurate diagnosis — but when it comes to the heart, motion makes it one of the most difficult organs to capture in high resolution. Traditional reconstruction methods often struggle to deliver the detail clinicians need.

«Deep neural networks can improve the clarity and diagnostic value by giving much sharper and higher resolution images from measurements where classical methods just don’t do as well.»


Reinhard Heckel

MCML PI

Reinhard Heckel, Professor of Machine Learning at TUM and MCML PI, is using deep neural networks to change that. His team is developing methods that reconstruct sharper, more detailed images from limited or noisy measurements — even when the subject is moving.

«The data is really what makes the difference between a well-performing method that is robust and reliable, and a method that is just going to work on a handful of patients.»


Reinhard Heckel

MCML PI

A key focus of his research is data: how to source it, how to ensure it’s diverse, and how to train robust models that generalize across patient populations.

This work is paving the way for more accurate imaging tools that can help detect pathologies that might otherwise go unnoticed.

This video is part of our MCML spotlight series on researchers driving real-world impact with AI.

The film was produced and edited by Nicole Huminski and Nikolai Huber.

 

#blog #research #heckel
Subscribe to RSS News feed

Related

Link to COSMOS – Teaching Vision-Language Models to Look Beyond the Obvious

19.02.2026

COSMOS – Teaching Vision-Language Models to Look Beyond the Obvious

Presented at CVPR 2025, COSMOS shows how smarter training helps VLMs learn from details and context, improving AI understanding without larger models.

Read more
Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Back to Top