Home  | News

08.12.2024

Tiny logo
Teaser image to MCML at NeurIPS 2024

MCML at NeurIPS 2024

31 Accepted Papers (23 Main, and 8 Workshops)

38th Conference on Neural Information Processing Systems, Vancouver, Canada, Dec 10-15, 2024

We are happy to announce that MCML researchers have contributed a total of 31 papers to NeurIPS 2024: 23 Main, and 8 Workshop papers. Congrats to our researchers!

Main Track (23 papers)

E. Ailer • N. Dern • J. Hartford • N. Kilbertus
Targeted Sequential Indirect Experiment Design.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

A. Bonfanti • G. Bruno • C. Cipriani
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

R. Dhahri • A. Immer • B. Charpentier • S. GünnemannV. Fortuin
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

L. EyringS. KarthikK. Roth • A. Dosovitskiy • Z. Akata
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

F. Hoppe • C. M. Verdun • H. LausF. KrahmerH. Rauhut
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

A. Javanmardi • D. Stutz • E. Hüllermeier
Conformalized Credal Set Predictors.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

M. Kollovieh • B. Charpentier • D. Zügner • S. Günnemann
Expected Probabilistic Hierarchies.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

F. Köhler • S. Niedermayr • R. WestermannN. Thuerey
APEBench: A Benchmark for Autoregressive Neural Emulators of PDEs.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

A. H. Kargaran • F. Yvon • H. Schütze
GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

M. Muschalik • H. Baniecki • F. Fumagalli • P. Kolpaczki • B. Hammer • E. Hüllermeier
shapiq: Shapley Interactions for Machine Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

V. MelnychukS. Feuerriegel • M. van der Schaar
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

Y. MaV. MelnychukJ. SchweisthalS. Feuerriegel
DiffPO: A causal diffusion model for learning distributions of potential outcomes.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

G. Ma • Y. Wang • D. Lim • S. Jegelka • Y. Wang
A Canonicalization Perspective on Invariant and Equivariant Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

T. NaglerL. SchneiderB. BischlM. Feurer
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

R. PaolinoS. Maskey • P. Welke • G. Kutyniok
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

D. Rügamer • B. X. W. Liew • Z. Altai • A. Stöcker
A Functional Extension of Semi-Structured Networks.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

R. Stolz • H. Krasowski • J. Thumm • M. EichelbeckP. GassertM. Althoff
Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous Action Masking.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

V. Udandarao • K. Roth • S. Dziadzio • A. Prabhu • M. Cherti • O. Vinyals • O. Hénaff • S. Albanie • Z. Akata • M. Bethge
A Practitioner's Guide to Real-World Continual Multimodal Pretraining.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

J. Wang • M. GhahremaniY. LiB. OmmerC. Wachinger
Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

Y. Wang • K. Hu • S. Gupta • Z. Ye • Y. Wang • S. Jegelka
Understanding the Role of Equivariance in Self-supervised Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

D. WinkelN. StraußM. BernhardZ. LiT. SeidlM. Schubert
Autoregressive Policy Optimization for Constrained Allocation Tasks.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

Y. Wang • Y. Wu • Z. Wei • S. Jegelka • Y. Wang
A Theoretical Understanding of Self-Correction through In-context Alignment.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

M. Yau • N. Karalias • E. Lu • J. Xu • S. Jegelka
Are Graph Neural Networks Optimal Approximation Algorithms?
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

Workshops (8 papers)

C. BülteP. SchollG. Kutyniok
Probabilistic predictions with Fourier neural operators.
BDU @NeurIPS 2024 - Workshop Bayesian Decision-making and Uncertainty: from probabilistic and spatiotemporal modeling to sequential experiment design at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

B. Cong • N. Daheim • Y. ShenD. Cremers • R. Yokota • M. Khan • T. Möllenhoff
Variational Low-Rank Adaptation Using IVON.
FITML @NeurIPS 2024 - Workshop Fine-Tuning in Modern Machine Learning: Principles and Scalability at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

L. Gosch • M. Sabanayagam • D. Ghoshdastidar • S. Günnemann
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks.
AdvML-Frontiers @NeurIPS 2024 - 3rd Workshop on New Frontiers in Adversarial Machine Learning at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

A. Koebler • T. Decker • I. Thon • V. Tresp • F. Buettner
Incremental Uncertainty-aware Performance Monitoring with Labeling Intervention.
BDU @NeurIPS 2024 - Workshop Bayesian Decision-making and Uncertainty: from probabilistic and spatiotemporal modeling to sequential experiment design at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

M. Koshil • T. NaglerM. Feurer • K. Eggensperger
Towards Localization via Data Embedding for TabPFN.
TLR @NeurIPS 2024 - 3rd Table Representation Learning Workshop at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

B. M. G. Nielsen • L. Gresele • A. Dittadi
Challenges in Explaining Representational Similarity through Identifiability.
UniReps @NeurIPS 2024 - 2nd Workshop on Unifying Representations in Neural Models at the 37th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

A. White • A. Büttner • M. Gelbrecht • N. Kilbertus • F. Hellmann • N. Boers
Projected Neural Differential Equations for Power Grid Modeling with Constraints.
D3S3 @NeurIPS 2024 - Workshop on Data-driven and Differentiable Simulations, Surrogates, and Solvers at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

Y. Zhang • Y. LiX. Wang • Q. Shen • B. PlankB. BischlM. Rezaei • K. Kawaguchi
FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models.
Compression Workshop @NeurIPS 2024 - Workshop on Machine Learning and Compression at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

#research #top-tier-work #akata #althoff #bauer-s #bischl #cremers #feuerriegel #feurer #fornasier #fortuin #guennemann #huellermeier #jegelka #kilbertus #krahmer #kutyniok #nagler #ommer #plank #rauhut #ruegamer #schubert #schuetze #seidl #thuerey #tresp #wachinger #westermann
Subscribe to RSS News feed

Related

Link to Zigzag Your Way to Faster, Smarter AI Image Generation

20.11.2025

Zigzag Your Way to Faster, Smarter AI Image Generation

ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.

Link to Anne-Laure Boulesteix Among the World’s Most Cited Researchers

13.11.2025

Anne-Laure Boulesteix Among the World’s Most Cited Researchers

MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.

Link to Björn Ommer Featured in Frankfurter Rundschau

13.11.2025

Björn Ommer Featured in Frankfurter Rundschau

Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.

Link to Fabian Theis Among the World’s Most Cited Researchers

13.11.2025

Fabian Theis Among the World’s Most Cited Researchers

Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.

Link to Explaining AI Decisions: Shapley Values Enable Smart Exosuits

13.11.2025

Explaining AI Decisions: Shapley Values Enable Smart Exosuits

AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.

Back to Top