10.07.2024

Teaser image to

Three papers at UAI 2024

40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Barcelona, Spain, 15.07.2024–19.07.2024

We are happy to announce that MCML researchers are represented with three papers at UAI 2024:

C. Damke and E. Hüllermeier.
Linear Opinion Pooling for Uncertainty Quantification on Graphs.
UAI 2024 - 40th Conference on Uncertainty in Artificial Intelligence. Barcelona, Spain, Jul 16-18, 2024. URL GitHub
Abstract

We address the problem of uncertainty quantification for graph-structured data, or, more specifically, the problem to quantify the predictive uncertainty in (semi-supervised) node classification. Key questions in this regard concern the distinction between two different types of uncertainty, aleatoric and epistemic, and how to support uncertainty quantification by leveraging the structural information provided by the graph topology. Challenging assumptions and postulates of state-of-the-art methods, we propose a novel approach that represents (epistemic) uncertainty in terms of mixtures of Dirichlet distributions and refers to the established principle of linear opinion pooling for propagating information between neighbored nodes in the graph. The effectiveness of this approach is demonstrated in a series of experiments on a variety of graph-structured datasets.

MCML Authors
Link to Profile Eyke Hüllermeier

Eyke Hüllermeier

Prof. Dr.

Artificial Intelligence & Machine Learning


L. Kook, C. Kolb, P. Schiele, D. Dold, M. Arpogaus, C. Fritz, P. Baumann, P. Kopper, T. Pielok, E. Dorigatti and D. Rügamer.
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression.
UAI 2024 - 40th Conference on Uncertainty in Artificial Intelligence. Barcelona, Spain, Jul 16-18, 2024. URL
Abstract

Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far. We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, time-series, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.

MCML Authors

Y. Sale, P. Hofman, T. Löhr, L. Wimmer, T. Nagler and E. Hüllermeier.
Label-wise Aleatoric and Epistemic Uncertainty Quantification.
UAI 2024 - 40th Conference on Uncertainty in Artificial Intelligence. Barcelona, Spain, Jul 16-18, 2024. URL
Abstract

We present a novel approach to uncertainty quantification in classification tasks based on label-wise decomposition of uncertainty measures. This label-wise perspective allows uncertainty to be quantified at the individual class level, thereby improving cost-sensitive decision-making and helping understand the sources of uncertainty. Furthermore, it allows to define total, aleatoric, and epistemic uncertainty on the basis of non-categorical measures such as variance, going beyond common entropy-based measures. In particular, variance-based measures address some of the limitations associated with established methods that have recently been discussed in the literature. We show that our proposed measures adhere to a number of desirable properties. Through empirical evaluation on a variety of benchmark data sets – including applications in the medical domain where accurate uncertainty quantification is crucial – we establish the effectiveness of label-wise uncertainty quantification.

MCML Authors
Link to website

Paul Hofman

Artificial Intelligence & Machine Learning

Link to website

Lisa Wimmer

Statistical Learning & Data Science

Link to Profile Thomas Nagler

Thomas Nagler

Prof. Dr.

Computational Statistics & Data Science

Link to Profile Eyke Hüllermeier

Eyke Hüllermeier

Prof. Dr.

Artificial Intelligence & Machine Learning


10.07.2024


Subscribe to RSS News feed

Related

Link to

05.12.2024

26 papers at NeurIPS 2024

38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver, Canada, 10.12.2024 - 15.12.2024


Link to

06.11.2024

20 papers at EMNLP 2024

Conference on Empirical Methods in Natural Language Processing (EMNLP 2024). Miami, FL, USA, 12.11.2024 - 16.11.2024


Link to

18.10.2024

Three papers at ECAI 2024

27th European Conference on Artificial Intelligence (ECAI 2024). Santiago de Compostela, Spain, 19.10.2024 - 24.10.2024


Link to

01.10.2024

16 papers at MICCAI 2024

27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024). Marrakesh, Morocco, 06.10.2024 - 10.10.2024


Link to

26.09.2024

20 papers at ECCV 2024

18th European Conference on Computer Vision (ECCV 2024). Milano, Italy, 29.09.2024 - 04.10.2024