Home  | News

03.05.2024

Tiny logo
Teaser image to MCML at ICLR 2024

MCML at ICLR 2024

16 Accepted Papers (9 Main, and 7 Workshops)

12th International Conference on Learning Representations, Vienna, Austria, May 07-11, 2024

We are happy to announce that MCML researchers have contributed a total of 16 papers to ICLR 2024: 9 Main, and 7 Workshop papers. Congrats to our researchers!

Main Track (9 papers)

S. d'Ascoli • S. Becker • P. Schwaller • A. Mathis • N. Kilbertus
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL GitHub

L. Eyring • D. Klein • T. Uscidda • G. Palla • N. Kilbertus • Z. Akata • F. J. Theis
Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

D. Frauen • F. Imrie • A. Curth • V. MelnychukS. Feuerriegel • M. van der Schaar
A Neural Framework for Generalized Causal Sensitivity Analysis.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

K. HeßV. MelnychukD. FrauenS. Feuerriegel
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

C. KokeD. Cremers
HoloNets: Spectral Convolutions do extend to Directed Graphs.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

V. MelnychukD. FrauenS. Feuerriegel
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

M. SchröderD. FrauenS. Feuerriegel
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

S. SolonetsD. Sinitsyn • L. Von Stumberg • N. AraslanovD. Cremers
An Analytical Solution to Gauss-Newton Loss for Direct Image Alignment.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

A. Vahidi • S. Schosser • L. WimmerY. LiB. BischlE. HüllermeierM. Rezaei
Probabilistic Self-supervised Representation Learning via Scoring Rules Minimization.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL GitHub

Workshops (7 papers)

S. Chen • Z. Han • B. HeZ. Ding • W. Yu • P. Torr • V. Tresp • J. Gu
Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
SeT LLM @ICLR 2024 - Workshop on Secure and Trustworthy Large Language Models at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

S. Chen • Z. Han • B. He • M. Buckley • P. Torr • V. Tresp • J. Gu
Understanding and Improving In-Context Learning on Vision-language Models.
ME-FoMo @ICLR 2024 - Workshop on Mathematical and Empirical Understanding of Foundation Models at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

R. Kohli • M. FeurerB. Bischl • K. Eggensperger • F. Hutter
Towards Quantifying the Effect of Datasets for Benchmarking: A Look at Tabular Machine Learning.
DMLR @ICLR 2024 - Workshop on Data-centric Machine Learning Research at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

C. Liu • C. M. Albrecht • Y. Wang • X. Zhu
CromSS: Cross-modal pre-training with noisy labels for remote sensing image segmentation.
ML4RS @ICLR 2024 - 2nd Workshop Machine Learning for Remote Sensing at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. PDF

Z. Li • S. S. Cranganore • N. Youngblut • N. Kilbertus
Whole Genome Transformers for Gene Interaction Effects in Microbiome Habitat Prediction.
MLGenX @ICLR 2024 - Workshop Machine Learning for Genomics Explorations at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

A. ModarressiA. Imani • M. Fayyaz • H. Schütze
RET-LLM: Towards a General Read-Write Memory for Large Language Models.
AGI @ICLR 2024 - Workshop on Artificial General Intelligence at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. arXiv

S. Zhao • I. Prapas • I. Karasante • Z. Xiong • I. Papoutsis • G. Camps-Valls • X. Zhu
Causal Graph Neural Networks for Wildfire Danger Prediction.
ML4RS @ICLR 2024 - 2nd Workshop Machine Learning for Remote Sensing at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. PDF

#research #top-tier-work #bischl #cremers #feuerriegel #feurer #huellermeier #kilbertus #schuetze #theis #tresp #zhu
Subscribe to RSS News feed

Related

Link to World’s First Complete 3D Model of All Buildings Released

04.12.2025

World’s First Complete 3D Model of All Buildings Released

Xiaoxiang Zhu’s team releases GlobalBuildingAtlas, a high-res 3D map of 2.75B buildings for advanced urban and climate analysis.

Link to When to Say "I’m Not Sure": Making Language Models More Self-Aware

04.12.2025

When to Say "I’m Not Sure": Making Language Models More Self-Aware

ICLR 2025 research by the groups of David Rügamer, and Bernd Bischl introduces methods to make LLMs more reliable by expressing uncertainty.

Link to Research Stay at Princeton University

01.12.2025

Research Stay at Princeton University

Abdurahman Maarouf spent three months at Princeton with the AI X-Change Program, advancing causal ML and studying short-form video platform effects.

Link to

28.11.2025

MCML at NeurIPS 2025

MCML researchers are represented with 46 papers at NeurIPS 2025 (37 Main, and 9 Workshops).

Link to Seeing the Bigger Picture – One Detail at a Time

27.11.2025

Seeing the Bigger Picture – One Detail at a Time

FLAIR, introduced by Zeynep Akata’s group at CVPR 2025, brings fine-grained, text-guided detail recognition to vision-language models.

Back to Top