18
Jul
©jittawit.21 - stock.adobe.com
AI Keynote Series
Representation Learning: A Causal Perspective
Yixin Wang, University of Michigan
18.07.2024
5:00 pm - 6:30 pm
Online via Zoom
Representation learning aims to create low-dimensional representations that capture essential features of high-dimensional data, such as images and texts. Ideally, these representations should efficiently capture meaningful, non-spurious features and be disentangled for interpretability. However, defining and enforcing these qualities is challenging.
In this talk, a causal perspective on representation learning is presented. The desiderata for effective representation learning are formalized using counterfactual concepts, which lead to metrics and algorithms designed to achieve efficient, non-spurious, and disentangled representations. The talk covers the theoretical foundations of the proposed algorithm and demonstrates its performance in both supervised and unsupervised settings.
Organized by:
Institute of AI in Management LMU Munich
Related
Colloquium • 15.01.2025 • LMU Department of Statistics and via zoom
Additive Density-on-Scalar Regression in Bayes Hilbert Spaces With an Application to Gender Economics
15.01.25, 4-6 pm: LMU Statistics Colloquium with Sonja Greven (HU Berlin).
©jittawit.21 - stock.adobe.com
AI Keynote Series • 09.01.2025 • Online via Zoom
Experimental Designs for a/B Testing in Marketplaces
09.01.25, 12-1:30 pm: AI Keynote Series with Chengchun Shi from London School of Economics and Political Science.