18
Jul
©jittawit.21 - stock.adobe.com
AI Keynote Series
Representation Learning: A Causal Perspective
Yixin Wang, University of Michigan
18.07.2024
5:00 pm - 6:30 pm
Online via Zoom
Representation learning aims to create low-dimensional representations that capture essential features of high-dimensional data, such as images and texts. Ideally, these representations should efficiently capture meaningful, non-spurious features and be disentangled for interpretability. However, defining and enforcing these qualities is challenging.
In this talk, a causal perspective on representation learning is presented. The desiderata for effective representation learning are formalized using counterfactual concepts, which lead to metrics and algorithms designed to achieve efficient, non-spurious, and disentangled representations. The talk covers the theoretical foundations of the proposed algorithm and demonstrates its performance in both supervised and unsupervised settings.
Organized by:
Institute of AI in Management LMU Munich
Related
Colloquium • 05.02.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Isabel Valera (Saarland University in Saarbrücken).
Colloquium • 29.01.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Sophie Langer (University of Twente).
Colloquium • 15.01.2025 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Sonja Greven (HU Berlin).
Colloquium • 11.12.2024 • LMU Department of Statistics and via zoom
TBA
Colloquium at the LMU Department of Statistics with Stijn Vansteelandt (Ghent University).
Munich AI Lectures • 25.11.2024 • Große Aula der LMU Geschwister-Scholl-Platz 1, Room 120 80539 München
The Mathematical Universe behind Deep Neural Networks
Join us on Nov 25 for Prof. Helmut Bölcskei’s lecture on the mathematical foundations driving deep neural networks, hosted by Bavarian AI at LMU.