26

Jun

Teaser image to The Complexities of Differential Privacy for Survey Data

Colloquium

The Complexities of Differential Privacy for Survey Data

Jörg Drechsler, LMU Munich

   26.06.2024

   4:15 pm - 5:45 pm

   LMU Department of Statistics and via zoom

The concept of differential privacy gained substantial attention in recent years, most notably since the U.S. Census Bureau announced the adoption of the concept for the 2020 Decennial Census. However, despite its attractive theoretical properties, implementing the approach in practice is challenging, especially when it comes to survey data.

In this talk I will present some results from a project funded by the U.S. Census Bureau that explores the possibilities and limitations of differential privacy for survey data. I will highlight some key findings from the project and also discuss some of the challenges that would still need to be addressed if the framework should become the new data protection standard at statistical agencies.


Related

Link to TBA

Colloquium  •  05.02.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Isabel Valera (Saarland University in Saarbrücken).


Link to TBA

Colloquium  •  29.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sophie Langer (University of Twente).


Link to TBA

Colloquium  •  15.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sonja Greven (HU Berlin).


Link to TBA

Colloquium  •  11.12.2024  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Stijn Vansteelandt (Ghent University).


Link to The Mathematical Universe behind Deep Neural Networks

Munich AI Lectures  •  25.11.2024  •  Große Aula der LMU Geschwister-Scholl-Platz 1, Room 120 80539 München

The Mathematical Universe behind Deep Neural Networks

Join us on Nov 25 for Prof. Helmut Bölcskei’s lecture on the mathematical foundations driving deep neural networks, hosted by Bavarian AI at LMU.