03
Jun
Explainable Methods for Reinforcement Learning
Jasmina Gajcin, Trinity College Dublin
03.06.2024
4:15 pm - 5:45 pm
LMU Department of Statistics and via zoom
Deep reinforcement learning (DRL) algorithms have been successfully devel- oped for many high-risk real-life tasks in many fields such as autonomous driving, healthcare and finance. However, these algorithms rely on neural networks, making their decisions difficult to understand and interpret.
In this talk, I will cover some of the main challenges for developing explainable DRL methods, especially focusing on the difference between supervised and reinforcement learning from the perspective of explainability. Additionally, a part of this talk will be focused on counterfactual explanations in RL. Counterfactual explanations are a powerful explanation method and can explain outcomes by contrasting them with similar events which led to a different outcome. The talk will delve into how counterfactual explanations can be utilized in an RL setting.
Related
Colloquium • 16.07.2024 • LMU Department of Statistics and via zoom
Privacy, Data Privacy, and Differential Privacy
Colloquium at the LMU Department of Statistics with James Bailie from Harvard University.
Colloquium • 10.07.2024 • LMU Department of Statistics and via zoom
Variational Learning for Large Deep Networks
Colloquium at the LMU Department of Statistics with Thomas Möllenhoff from RIKEN, Tokyo.
Colloquium • 03.07.2024 • LMU Department of Statistics and via zoom
Can today’s intention to treat have a causal effect on tomorrow’s hazard function?
Colloquium at the LMU Department of Statistics with Jan Beyersmann, University of Ulm.
Colloquium • 26.06.2024 • LMU Department of Statistics and via zoom
The Complexities of Differential Privacy for Survey Data
Colloquium • 19.06.2024 • LMU Department of Statistics and via zoom
Resampling-based inference for the average treatment effect in observational studies with competing risks
This talk explores three resampling methods to construct valid confidence intervals and bands for treatment effect estimation in competing risks studies.