15
May
Colloquium
Optimal convex M-estimation via score matching
Richard Samworth, Cambridge University
15.05.2024
5:00 pm - 6:30 pm
LMU Department of Statistics and via zoom
In the context of linear regression, we construct a data-driven convex loss function with respect to which empirical risk minimisation yields opti- mal asymptotic variance in the downstream estimation of the regression coefficients. Our semiparametric approach targets the best decreasing approximation of the derivative of the log-density of the noise distribution. At the population level, this fitting process is a nonparametric extension of score matching, corresponding to a log-concave projection of the noise distribution with respect to the Fisher divergence. The procedure is com- putationally efficient, and we prove that our procedure attains the minimal asymptotic covariance among all convex M-estimators. As an example of a non-log-concave setting, for Cauchy errors, the optimal convex loss function is Huber-like, and our procedure yields an asymptotic efficiency greater than 0.87 relative to the oracle maximum likelihood estimator of the regression coefficients that uses knowledge of this error distribution; in this sense, we obtain robustness without sacrificing much efficiency.
Related
Colloquium • 08.11.2023 • LMU Department of Statistics and via zoom
Active learning-assisted neutron spectroscopy with log-Gaussian processes
Join the lecture with Mario Teixeira Parente, Department of Statistics, LMU Munich.
©geralt - pixabay.com
AI Keynote Series • 20.07.2023 • LMU Institute of AI in Management via zoom
Applied Causal Inference with Surrogate Representation
Join the presentation of Lu Cheng, University of Illinois, Chicago.
Colloquium • 15.02.2023 • LMU Department of Statistics and via zoom
Assessing goodness of fit for network models
Join the presentation of Gesine Reinert, University of Oxford, on network models.
©jittawit.21 - stock.adobe.com
AI Keynote Series • 08.08.2024 • Online via Zoom
Auditing Fairness under Unobserved Confounding
Join the lecture with Michael Oberst from Johns Hopkins University.
Colloquium • 06.12.2023 • LMU Department of Statistics and via zoom
AutoML for tabular datasets and tabular datasets for AutoML
Join the lecture with our PI Matthias Feurer, LMU Munich, giving a short introduction into AutoML and an overview of the AutoML research at his chair.