Home  | Tags | #p-fortuin

#p-fortuin

SBL+25

Data-Driven Discovery of Feature Groups in Clinical Time Series

ML4H 2025

#p-fortuin

KFS25

ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods

NeurIPS 2025

#p-fortuin

FUS+25

OneProt: Towards Multi-Modal Protein Foundation Models via Latent Space Alignment of Sequence, Structure, Binding Sites and Text Encoders

PLOS Computational Biology 21.11. Nov. 2025

#p-fortuin

RRF+25b

Can Transformers Learn Full Bayesian Inference in Context?

ICML 2025

#p-fortuin #p-ruegamer

RF25

Sparse Gaussian Neural Processes

AABI 2025

#p-fortuin

RRF+25

Can Transformers Learn Full Bayesian Inference in Context?

FPI @ICLR 2025

#p-fortuin #p-ruegamer

RRF+25a

Can Transformers Learn Full Bayesian Inference in Context?

SynthData @ICLR 2025

#p-fortuin #p-ruegamer

DIC+24

Shaving Weights With Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood

NeurIPS 2024

#p-fortuin #p-guennemann

FMF24a

Stein Variational Newton Neural Network Ensembles

Preprint (Nov. 2024)

#p-fortuin

BIY+24

Improving Neural Additive Models With Bayesian Principles

ICML 2024

#p-fortuin

PSP+24

Position: Bayesian Deep Learning Is Needed in the Age of Large-Scale AI

ICML 2024

#p-fortuin #p-ruegamer

SMR+24

Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information

Preprint (Jul. 2024)

#p-fortuin
Back to Top