is Professor for AI for Image-Guided Diagnosis and Therapy at TU Munich.
His research bridges the gap between medicine and computer science towards data-driven, personalized medicine for diagnosis and therapy. His research focuses on developing innovative computational analysis methods to extract actionable biomarkers for clinical decision-making from heterogeneous, multi-modal medical data. Translating these advancements into clinical application is a core motivation for his work.
Biophysical modeling of brain tumors has emerged as a promising strategy for personalizing radiotherapy planning by estimating the otherwise hidden distribution of tumor cells within the brain. However, many existing state-of-the-art methods are computationally intensive, limiting their widespread translation into clinical practice. In this work, we propose an efficient and direct method that utilizes soft physical constraints to estimate the tumor cell concentration from preoperative MRI of brain tumor patients. Our approach optimizes a 3D tumor concentration field by simultaneously minimizing the difference between the observed MRI and a physically informed loss function. Compared to existing state-of-the-art techniques, our method significantly improves predicting tumor recurrence on two public datasets with a total of 192 patients while maintaining a clinically viable runtime of under one minute - a substantial reduction from the 30 minutes required by the current best approach. Furthermore, we showcase the generalizability of our framework by incorporating additional imaging information and physical constraints, highlighting its potential to translate to various medical diffusion phenomena with imperfect data.
VoxelMorph, proposed in 2018, utilizes Convolutional Neural Networks (CNNs) to address medical image registration problems. In 2021 TransMorph advanced this approach by replacing CNNs with Attention mechanisms, claiming enhanced performance. More recently, the rise of Mamba with selective state space models has led to MambaMorph, which substituted Attention with Mamba blocks, asserting superior registration. These developments prompt a critical question: does chasing the latest computational trends with “more advanced” computational blocks genuinely enhance registration accuracy, or is it merely hype? Furthermore, the role of classic high-level registration-specific designs, such as coarse-to-fine pyramid mechanism, correlation calculation, and iterative optimization, warrants scrutiny, particularly in differentiating their influence from the aforementioned low-level computational blocks. In this study, we critically examine these questions through a rigorous evaluation in brain MRI registration. We employed modularized components for each block and ensured unbiased comparisons across all methods and designs to disentangle their effects on performance. Our findings indicate that adopting “advanced” computational elements fails to significantly improve registration accuracy. Instead, well-established registration-specific designs offer fair improvements, enhancing results by a marginal 1.5% over the baseline. Our findings emphasize the importance of rigorous, unbiased evaluation and contribution disentanglement of all low- and high-level registration components, rather than simply following the computer vision trends with “more advanced” computational blocks. We advocate for simpler yet effective solutions and novel evaluation metrics that go beyond conventional registration accuracy, warranting further research across various organs and modalities.
This paper introduces a novel top-down representation approach for deformable image registration, which estimates the deformation field by capturing various short-and long-range flow features at different scale levels. As a Hierarchical Vision Transformer (H-ViT), we propose a dual self-attention and cross-attention mechanism that uses high-level features in the deformation field to represent low-level ones, enabling information streams in the deformation field across all voxel patch embeddings irrespective of their spatial proximity. Since high-level features contain abstract flow patterns, such patterns are expected to effectively contribute to the representation of the deformation field in lower scales. When the self-attention module utilizes within-scale short-range patterns for representation, the cross-attention modules dynamically look for the key tokens across different scales to further interact with the local query voxel patches. Our method shows superior accuracy and visual quality over the state-of-the-art registration methods in five publicly available datasets, highlighting a substantial enhancement in the performance of medical imaging registration.
Do black-box neural network models learn clinically relevant features for fracture diagnosis? The answer not only establishes reliability, quenches scientific curiosity, but also leads to explainable and verbose findings that can assist the radiologists in the final and increase trust. This work identifies the concepts networks use for vertebral fracture diagnosis in CT images. This is achieved by associating concepts to neurons highly correlated with a specific diagnosis in the dataset. The concepts are either associated with neurons by radiologists pre-hoc or are visualized during a specific prediction and left for the user’s interpretation. We evaluate which concepts lead to correct diagnosis and which concepts lead to false positives. The proposed frameworks and analysis pave the way for reliable and explainable vertebral fracture diagnosis.
©all images: LMU | TUM