Home  | Research | Groups | Benedikt Wiestler

Research Group Benedikt Wiestler


Link to website at TUM PI Matchmaking

Benedikt Wiestler

Prof. Dr.

Principal Investigator

Benedikt Wiestler

is Professor for AI for Image-Guided Diagnosis and Therapy at TU Munich.

His research bridges the gap between medicine and computer science towards data-driven, personalized medicine for diagnosis and therapy. His research focuses on developing innovative computational analysis methods to extract actionable biomarkers for clinical decision-making from heterogeneous, multi-modal medical data. Translating these advancements into clinical application is a core motivation for his work.

Team members @MCML

PostDocs

Link to website

Cosmin Bercea

Dr.

Link to website

Sandeep Nagar

Dr.

PhD Students

Link to website

Julian McGinnis

Link to website

Daniel Scholz

Link to website

Jonas Weidner

Recent News @MCML

Link to MCML at MICCAI 2025

MCML at MICCAI 2025

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to MCML at MICCAI 2024

MCML at MICCAI 2024

Link to MCML Researchers With 93 Papers in Highly-Ranked Journals

MCML Researchers With 93 Papers in Highly-Ranked Journals

Link to MCML at MICCAI 2023

MCML at MICCAI 2023

Publications @MCML

2025


[32] Top Journal
C. Saueressig • C. Delbridge • D. ScholzA. Kazemi • M. Z. Khan • M. Metz • B. Meyer • M. Mitsdoerffer • P. J. SchüfflerB. Wiestler
From histology to diagnosis: Leveraging pathology foundation models for glioma classification.
Computers in Biology and Medicine 197.Part A. Oct. 2025. DOI

[31]
V. Biller • L. Zimmer • C. Erdur • S. NagarD. RückertN. BubeckJ. Weidner
A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis.
Preprint (Oct. 2025). arXiv GitHub

[30]
A. C. Erdur • D. Scholz • J. A. Buchner • D. Bernhardt • S. E. Combs • B. WiestlerD. Rückert • J. C. Peeken
Independent Benchmarking of Prompt-Based Medical Segmentation Models.
Preprint (Oct. 2025). DOI

[29]
J. Weidner • I. Ezhov • M. Balcerak • A. Datchev • L. Zimmer • D. Rückert • B. Menze • B. Wiestler
From Fiber Tracts to Tumor Spread: Biophysical Modeling of Butterfly Glioma Growth Using Diffusion Tensor Imaging.
CDMRI @MICCAI 2025 - Workshop on Computational Diffusion MRI at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. To be published. Preprint available. arXiv

[28]
M. Hartenberger • H. Ayaz • F. Ozlugedik • C. Caredda • L. Giannoni • F. Lange • L. LuxJ. Weidner • A. Berger • F. Kofler • M. J. Menten • B. Montcel • I. Tachtsidis • D. Rückert • I. Ezhov
Redefining spectral unmixing for in-vivo brain tissue analysis from hyperspectral imaging.
CMMCA @MICCAI 2025 - Workshop on Computational Mathematics Modeling in Cancer Analysis at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[27]
J. Weidner • M. Balcerak • I. Ezhov • A. Datchev • L. Lux • L. Zimmer • D. Rückert • B. Menze • B. Wiestler
A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration.
CMMCA @MICCAI 2025 - Workshop on Computational Mathematics Modeling in Cancer Analysis at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[26] A Conference
D. Scholz • A. C. Erdur • V. Ehm • A. Meyer-Baese • J. C. Peeken • D. RückertB. Wiestler
MM-DINOv2: Adapting Foundation Models for Multi-Modal Medical Image Analysis.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[25] A Conference
D. Scholz • A. C. Erdur • R. Holland • V. Ehm • J. C. Peeken • B. WiestlerD. Rückert
Contrastive Anatomy-Contrast Disentanglement: A Domain-General MRI Harmonization Method.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[24] A Conference
C. K. Wong • A. N. Christensen • C. I. BerceaJ. A. Schnabel • M. G. Tolsgaard • A. Feragen
Influence of Classification Task and Distribution Shift Type on OOD Detection in Fetal Ultrasound.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI GitHub

[23]
S. J. Roughley • J. P. Müller • S. Gao • Z. Gao • M. Ligero • R. Blums • M. Crispin-Ortuzar • J. A. Schnabel • B. Kainz • C. I. Bercea • I. P. Machado
GroundingDINO for Open-Set Lesion Detection in Medical Imaging.
MSB EMERGE @MICCAI 2025 - 2nd MICCAI Student Board Emerge Workshop at the 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. To be published. Preprint available. URL

[22] Top Journal
T. Wiltgen • J. McGinnis • R. Berg • C. C. Voon • O. Puonti • K. Giglhuber • C. Ganter • C. Zimmer • B. Hemmer • B. Wiestler • J. Kirschke • C. Preibisch • M. Mühlau
Towards quantitative intensity analysis of conventional T1-weighted images in multiple sclerosis.
NeuroImage 318.121395. Sep. 2025. DOI

[21]
A. C. Erdur • C. Beischl • D. Scholz • J. Pan • B. WiestlerD. Rückert • J. C. Peeken
MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder.
Preprint (Sep. 2025). arXiv

[20]
C. Liu • Y. Chen • H. Shi • J. Lu • B. Jian • J. Pan • L. Cai • J. Wang • Y. Zhang • J. LiC. I. Bercea • C. Ouyang • C. Chen • Z. Xiong • B. WiestlerC. WachingerD. Rückert • W. Bai • R. Arcucci
Does DINOv3 Set a New Medical Vision Standard?
Preprint (Sep. 2025). arXiv

[19]
L. Zimmer • J. Weidner • M. Balcerak • F. Kofler • I. Ezhov • B. Menze • B. Wiestler
PREDICT-GBM: Platform for Robust Evaluation and Development of Individualized Computational Tumor Models in Glioblastoma.
Preprint (Sep. 2025). arXiv

[18]
J. Li • C. Liu • W. Bai • M. Liu • R. Arcucci • C. I. BerceaJ. A. Schnabel
Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding.
Preprint (Aug. 2025). arXiv GitHub

[17]
J. Pan • B. Jian • P. Hager • Y. Zhang • C. Liu • F. Jungmann • H. B. Li • C. You • J. Wu • J. Zhu • F. Liu • Y. Liu • N. BubeckC. Wachinger • C. Chen • Z. Gong • C. Ouyang • G. Kaissis • B. WiestlerD. Rückert
Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models.
Preprint (Aug. 2025). arXiv

[16]
C. PellegriniE. ÖzsoyB. BusamB. WiestlerN. NavabM. Keicher
RaDialog: Large Vision-Language Models for X-Ray Reporting and Dialog-Driven Assistance.
MIDL 2025 - Medical Imaging with Deep Learning. Salt Lake City, UT, USA, Jul 09-11, 2025. URL GitHub

[15]
L. A. Heidrich • A. Rastogi • P. Upadhya • G. Brugnara • M. Foltyn-Dumitru • B. Wiestler • P. Vollmuth
Curriculum Learning for Language-guided, Multi-modal Detection of Various Pathologies.
MIDL 2025 - Medical Imaging with Deep Learning. Salt Lake City, UT, USA, Jul 09-11, 2025. To be published. Preprint available. URL

[14]
K. Yang • F. Musio • Y. Ma • N. Juchler • J. C. Paetzold • R. Al-Maskari • L. Höher • H. B. Li • I. E. Hamamci • A. Sekuboyina • S. Shit • H. Huang • C. Prabhakar • E. de la Rosa • B. Wittmann • D. Waldmannstetter • F. Kofler • F. Navarro • M. J. Menten • I. Ezhov • D. Rückert • I. N. Vos • Y. M. Ruigrok • B. K. Velthuis • H. J. Kuijf • P. Shi • W. Liu • T. Ma • M. R. Rokuss • Y. Kirchhoff • F. Isensee • K. Maier-Hein • C. Zhu • H. Zhao • P. Bijlenga • J. Hämmerli • C. Wurster • L. Westphal • J. Bisschop • E. Colombo • H. Baazaoui • H.-L. Handelsmann • A. Makmur • J. Hallinan • A. Soundararajan • B. Wiestler • J. S. Kirschke • R. Wiest • E. Montagnon • L. Letourneau-Guillon • K. Oh • D. Lee • A. Hilbert • O. U. Aydin • D. Rallios • J. Rieger • S. Tanioka • A. Koch • D. Frey • A. Qayyum • M. Mazher • S. Niederer • N. Disch • J. Holzschuh • D. LaBella • F. Galati • D. Falcetta • M. A. Zuluaga • C. Lin • H. Zhao • Z. Zhang • M. Zhang • X. You • H. Zhang • G.-Z. Yang • Y. Gu • S. Ra • J. Hwang • H. Park • J. Chen • M. Wodzinski • H. Müller • N. Mansouri • F. Autrusseau • C. Yalçin • R. E. Hamadache • C. Lisazo • J. Salvi • A. Casamitjana • X. Lladó • U. M. Lal-Trehan Estrada • V. Abramova • L. Giancardo • A. Oliver • P. Casademunt • A. Galdran • M. Delucchi • J. Liu • H. Huang • Y. Cui • Z. Lin • Y. Liu • S. Zhu • T. R. Patel • A. H. Siddiqui • V. M. Tutino • M. Orouskhani • H. Wang • M. Mossa-Basha • Y. Sato • S. Hirsch • S. Wegener • B. Menze
Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA.
Preprint (Jul. 2025). arXiv

[13] Top Journal
M. Balcerak • J. Weidner • P. Karnakov • I. Ezhov • S. Litvinov • P. Koumoutsakos • T. Amiranashvili • R. Z. Zhang • J. S. Lowengrub • I. Yakushev • B. Wiestler • B. Menze
Individualizing glioma radiotherapy planning by optimization of a data and physics-informed discrete loss.
Nature Communications 16.5982. Jun. 2025. DOI

[12]
C. J. Mertens • H. Häntze • S. Ziegelmayer • J. N. Kather • D. Truhn • S. H. Kim • F. Busch • D. Weller • B. Wiestler • M. Graf • F. Bamberg • C. L. Schlett • J. B. Weiss • S. Ringhof • E. Can • J. Schulz-Menger • T. Niendorf • J. Lammert • I. Molwitz • A. Kader • A. Hering • A. Meddeb • J. Nawabi • M. B. Schulze • T. Keil • S. N. Willich • L. Krist • M. Hadamitzky • A. Hannemann • F. Bassermann • D. Rückert • T. Pischon • A. Hapfelmeier • M. R. Makowski • K. K. Bressem • L. C. Adams
Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts.
Preprint (Jun. 2025). DOI

[11]
V. Ruozzi • S. MatinfarL. SchützB. Wiestler • A. Redaelli • E. Votta • N. Navab
BioSonix: Can Physics-based Sonification Perceptualize Tissue Deformations From Tool Interactions?
IPMI 2025 - Information Processing in Medical Imaging. Kos Island, Greece, May 25-30, 2025. DOI

[10]
J. Li • C. Liu • W. Bai • R. Arcucci • C. I. BerceaJ. A. Schnabel
Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions.
Preprint (Mar. 2025). arXiv GitHub

[9] Top Journal
C. I. BerceaB. WiestlerD. RückertJ. A. Schnabel
Evaluating normative representation learning in generative AI for robust anomaly detection in brain imaging.
Nature Communications 16.1624. Feb. 2025. DOI GitHub

[8]
Z. Haouari • J. Weidner • I. Ezhov • A. Varma • D. Rückert • B. Menze • B. Wiestler
Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models.
Preprint (Jan. 2025). arXiv

[7]
B. Jian • J. Pan • Y. LiF. Bongratz • R. Li • D. RückertB. WiestlerC. Wachinger
TimeFlow: Longitudinal Brain Image Registration and Aging Progression Analysis.
Preprint (Jan. 2025). arXiv

2024


[6]
J. Li • S. H. Kim • P. Müller • L. Felsner • D. RückertB. WiestlerJ. A. SchnabelC. I. Bercea
Language Models Meet Anomaly Detection for Better Interpretability and Generalizability.
MMMI @MICCAI 2024 - 5th International Workshop on Multiscale Multimodal Medical Imaging at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI GitHub

[5]
B. Jian • J. Pan • M. GhahremaniD. RückertC. WachingerB. Wiestler
Mamba? Catch The Hype Or Rethink What Really Helps for Image Registration.
WBIR @MICCAI 2024 - 11th International Workshop on Biomedical Image Registration at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI

[4] Top Journal
A. C. Erdur • D. Rusche • D. ScholzJ. Kiechle • S. Fischer • Ó. Llorián-Salvador • J. A. Buchner • M. Q. Nguyen • L. Etzel • J. Weidner • M.-C. Metz • B. WiestlerJ. A. SchnabelD. Rückert • S. E. Combs • J. C. Peeken
Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.
Strahlentherapie und Onkologie 201. Aug. 2024. DOI GitHub

2023


[3]
D. ScholzB. WiestlerD. RückertM. J. Menten
Metrics to Quantify Global Consistency in Synthetic Medical Images.
DGM4 @MICCAI 2023 - 3rd International Workshop on Deep Generative Models at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

[2] A Conference
N. Stolt-AnsóJ. McGinnis • J. Pan • K. Hammernik • D. Rückert
NISF: Neural implicit segmentation functions.
MICCAI 2023 - 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

2022


[1]
P. Engstler • M. Keicher • D. Schinz • K. Mach • A. S. Gersing • S. C. Foreman • S. S. Goller • J. Weissinger • J. Rischewski • A.-S. Dietrich • B. Wiestler • J. S. Kirschke • A. KhakzarN. Navab
Interpretable Vertebral Fracture Diagnosis.
iMIMIC @MICCAI 2022 - Workshop on Interpretability of Machine Intelligence in Medical Image Computing at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Singapore, Sep 18-22, 2022. DOI GitHub