AI-based image reconstruction models are increasingly deployed in clinical workflows to improve image quality from noisy data, such as low-dose X-rays or accelerated MRI scans. However, these models are typically evaluated using pixel-level metrics like PSNR, leaving their impact on downstream diagnostic performance and fairness unclear. We introduce a scalable evaluation framework that applies reconstruction and diagnostic AI models in tandem, which we apply to two tasks (classification, segmentation), three reconstruction approaches (U-Net, GAN, diffusion), and two data types (X-ray, MRI) to assess the potential downstream implications of reconstruction. We find that conventional reconstruction metrics poorly track task performance, where diagnostic accuracy remains largely stable even as reconstruction PSNR declines with increasing image noise. Fairness metrics exhibit greater variability, with reconstruction sometimes amplifying demographic biases, particularly regarding patient sex. However, the overall magnitude of this additional bias is modest compared to the inherent biases already present in diagnostic models. To explore potential bias mitigation, we adapt three strategies from classification literature to the reconstruction setting, but observe limited efficacy. Overall, our findings emphasize the importance of holistic performance and fairness assessments throughout the entire medical imaging workflow, especially as generative reconstruction models are increasingly deployed.
misc WBR+25
BibTeXKey: WBR+25