Janek Thomas
Dr.
* Former Member
This thesis focuses on automating model selection in AutoML, specifically through gradient boosting techniques like gradient tree and component-wise boosting. It addresses challenges in hyperparameter optimization using Bayesian methods, introduces a new feature selection technique, and proposes an AutoML approach that simplifies the process while maintaining accuracy. Four R packages were developed: mlrMBO for Bayesian optimization, autoxgboost for AutoML, compboost for component-wise boosting, and gamboostLSS for generalized additive models (Shortened.)
BibTeXKey: Tho19