Language confusion—where large language models (LLMs) generate unintended languages against the user’s need—remains a critical challenge, especially for English-centric models. We present the first mechanistic interpretability (MI) study of language confusion, combining behavioral benchmarking with neuron-level analysis. Using the Language Confusion Benchmark (LCB), we show that confusion points (CPs)—specific positions where language switches occur—are central to this phenomenon. Through layer-wise analysis with TunedLens and targeted neuron attribution, we reveal that transition failures in the final layers drive confusion. We further demonstrate that editing a small set of critical neurons, identified via comparative analysis with a multilingual-tuned counterpart, substantially mitigates confusion while largely preserving general competence and fluency. Our approach matches multilingual alignment in confusion reduction for many languages and yields cleaner, higher-quality outputs. These findings provide new insights into the internal dynamics of LLMs and highlight neuron-level interventions as a promising direction for robust, interpretable multilingual language modeling.
inproceedings NSS25
BibTeXKey: NSS25