Christian Böhm
Prof. Dr.
Principal Investigator
* Former Principal Investigator
The idea of combining the high representational power of deep learning techniques with clustering methods has gained much interest in recent years. Optimizing representation and clustering simultaneously has been shown to have an advantage over optimizing them separately. However, so far all proposed methods have been using a flat clustering strategy, with the true number of clusters known a priori. In this paper, we propose the Deep Embedded Cluster Tree (DeepECT), the first divisive hierarchical embedded clustering method. The cluster tree does not need to know the true number of clusters during optimization. Instead, the level of detail to be analyzed can be chosen afterward and for each sub-tree separately. An optional data-augmentation-based extension allows DeepECT to ignore prior-known invariances of the dataset, such as affine transformations in image data. We evaluate and show the advantages of DeepECT in extensive experiments.
inproceedings
BibTeXKey: MPB19