Home  | Publications | MHB+25

Purrception: Variational Flow Matching for Vector-Quantized Image Generation

MCML Authors

Link to Profile Björn Ommer PI Matchmaking

Björn Ommer

Prof. Dr.

Principal Investigator

Abstract

We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.

misc


Preprint

Oct. 2025

Authors

R.-A. Matişan • V. T. Hu • G. Bartosh • B. Ommer • C. G. M. Snoek • M. Welling • J.-W. van de Meent • M. M. Derakhshani • F. Eijkelboom

Links


Research Area

 B1 | Computer Vision

BibTeXKey: MHB+25

Back to Top