Home  | Publications | HUG+25

CAT-SG: A Large Dynamic Scene Graph Dataset for Fine-Grained Understanding of Cataract Surgery

MCML Authors

Abstract

Understanding the intricate workflows of cataract surgery requires modeling complex interactions between surgical tools, anatomical structures, and procedural techniques. Existing datasets primarily address isolated aspects of surgical analysis, such as tool detection or phase segmentation, but lack comprehensive representations that capture the semantic relationships between entities over time. This paper introduces the Cataract Surgery Scene Graph (CAT-SG) dataset, the first to provide structured annotations of tool-tissue interactions, procedural variations, and temporal dependencies. By incorporating detailed semantic relations, CAT-SG offers a holistic view of surgical workflows, enabling more accurate recognition of surgical phases and techniques. Additionally, we present a novel scene graph generation model, CatSGG, which outperforms current methods in generating structured surgical representations. The CAT-SG dataset is designed to enhance AI-driven surgical training, real-time decision support, and workflow analysis, paving the way for more intelligent, context-aware systems in clinical practice.

inproceedings


MICCAI 2025

28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025.
Conference logo
A Conference

Authors

F. Holm • G. Ünver • G. Ghazaei • N. Navab

Links

DOI GitHub

Research Area

 C1 | Medicine

BibTeXKey: HUG+25

Back to Top