We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval. The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering. Our solutions to the subtasks are based on data acquisition and model adaptation. We compare the performance of our submitted systems with the translate-test approach which proved to be the most useful in the previous edition of the shared task. Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.
inproceedings
BibTeXKey: HMV+24