Julia Herbinger
Dr.
* Former Member
This thesis addresses the challenges of interpreting machine learning models, particularly focusing on the limitations of global explanation methods. It identifies two key issues: the human-incomprehensibility of high-dimensional outputs and the misleading interpretations caused by aggregation bias. The thesis proposes solutions to these problems, such as grouping features for simpler interpretations and using recursive partitioning algorithms to provide regional explanations, ensuring more accurate and understandable insights into model behavior. (Shortened.)
BibTeXKey: Her23