Jann Goschenhofer
Dr.
* Former Member
This thesis addresses methods for training machine learning models with limited labeled data, focusing on semi-supervised, positive unlabeled, constrained clustering, and transfer learning. It explores deep semi-supervised learning, particularly in time series and medical imaging contexts, and investigates positive unlabeled learning methods that utilize predictive uncertainty for self-training. The thesis also introduces weakly supervised learning for constrained clustering, combining it with semi-supervised approaches, and applies transfer learning to tasks with varying granularity in medical domains. (Shortened).
BibTeXKey: Gos23