Home  | Publications | GKJ+24

H-ViT: A Hierarchical Vision Transformer for Deformable Image Registration

MCML Authors

Abstract

This paper introduces a novel top-down representation approach for deformable image registration, which estimates the deformation field by capturing various short-and long-range flow features at different scale levels. As a Hierarchical Vision Transformer (H-ViT), we propose a dual self-attention and cross-attention mechanism that uses high-level features in the deformation field to represent low-level ones, enabling information streams in the deformation field across all voxel patch embeddings irrespective of their spatial proximity. Since high-level features contain abstract flow patterns, such patterns are expected to effectively contribute to the representation of the deformation field in lower scales. When the self-attention module utilizes within-scale short-range patterns for representation, the cross-attention modules dynamically look for the key tokens across different scales to further interact with the local query voxel patches. Our method shows superior accuracy and visual quality over the state-of-the-art registration methods in five publicly available datasets, highlighting a substantial enhancement in the performance of medical imaging registration.

inproceedings


CVPR 2024

IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024.
Conference logo
A* Conference

Authors

M. Ghahremani • M. Khateri • B. Jian • B. Wiestler • E. Adeli • C. Wachinger

Links

DOI GitHub

Research Area

 C1 | Medicine

BibTeXKey: GKJ+24

Back to Top