Hüseyin Anil Gündüz
* Former Member
The field of computational biology has been enhanced by deep learning models, which hold great promise for revolutionizing domains such as protein folding and drug discovery. Recent studies have underscored the tremendous potential of these models, particularly in the realm of gene regulation and the more profound understanding of the non-coding regions of the genome. On the other hand, this raises significant concerns about the reliability and efficacy of such models, which have their own biases by design, along with those learned from the data. Uncertainty quantification allows us to measure where the system is confident and know when it can be trusted. In this paper, we study several uncertainty quantification methods with respect to a multi-target regression task, specifically predicting regulatory activity profiles using DNA sequence data. Using the Basenji model, we investigate how such methods can improve in-domain generalization, out-of-distribution detection, and provide coverage guarantees on prediction intervals.
inproceedings
BibTeXKey: GGB+23