Max Berrendorf
Dr.
* Former Member
Selecting diverse instances for annotation is one of the key factors of successful active learning strategies. To this end, existing methods often operate on high-dimensional latent representations. In this work, we propose to use the low-dimensional vector of predicted probabilities instead, which can be seamlessly integrated into existing methods. We empirically demonstrate that this considerably decreases the query time, i.e., time to select an instance for annotation, while at the same time improving results. Low query times are relevant for active learning researchers, which use a (fast) oracle for simulated annotation and thus are often constrained by query time. It is also practically relevant when dealing with complex annotation tasks for which only a small pool of skilled domain experts is available for annotation with a limited time budget.
inproceedings
BibTeXKey: GBM+22