Home  | Publications | DSB+23

Frequentist Uncertainty Quantification in Semi-Structured Neural Networks

MCML Authors

Link to Profile Bernd Bischl PI Matchmaking

Bernd Bischl

Prof. Dr.

Director

Link to Profile David Rügamer PI Matchmaking

David Rügamer

Prof. Dr.

Principal Investigator

Abstract

Semi-structured regression (SSR) models jointly learn the effect of structured (tabular) and unstructured (non-tabular) data through additive predictors and deep neural networks (DNNs), respectively. Inference in SSR models aims at deriving confidence intervals for the structured predictor, although current approaches ignore the variance of the DNN estimation of the unstructured effects. This results in an underestimation of the variance of the structured coefficients and, thus, an increase of Type-I error rates. To address this shortcoming, we present here a theoretical framework for structured inference in SSR models that incorporates the variance of the DNN estimate into confidence intervals for the structured predictor. By treating this estimate as a random offset with known variance, our formulation is agnostic to the specific deep uncertainty quantification method employed. Through numerical experiments and a practical application on a medical dataset, we show that our approach results in increased coverage of the true structured coefficients and thus a reduction in Type-I error rate compared to ignoring the variance of the neural network, naive ensembling of SSR models, and a variational inference baseline.

inproceedings


AISTATS 2023

26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain, Apr 25-27, 2023.
Conference logo
A Conference

Authors

E. Dorigatti • B. Schubert • B. BischlD. Rügamer

Links

URL

Research Area

 A1 | Statistical Foundations & Explainability

BibTeXKey: DSB+23

Back to Top