Home  | Opportunities | MLCU

Machine Learning Consulting Unit

The Machine Learning Consulting Unit (MLCU) is part of the of the MCML and offers applied researchers scientific consulting regarding the application and evaluation of machine learning methods.

Empowering Research Through Expert Consulting

Our primary goal is to provide consulting to applied sciences, for example medicine, psychology, biology and others. We aim to provide solutions, that based on our experience and expertise are most suitable to answer the research question at hand.

Consulting is free of charge (ca. 8h per project) for members of the MCML and the LMU. Consulting outside the MCML and LMU is also possible, but needs to be negotiated on a case by case basis. We also welcome joint research projects with the goal of publication and other forms of cooperation.

If you are interested in consulting, please contact us. Our experience shows, that it is advisable to register for consulting as early in the project as possible or even at the planning stage.

Team

Link to website

Andreas Bender

Dr.

Coordinator Statistical and Machine Learning Consulting

Link to Profile Bernd Bischl PI Matchmaking

Bernd Bischl

Prof. Dr.

Director

Link to Profile David Rügamer PI Matchmaking

David Rügamer

Prof. Dr.

Principal Investigator


Contact

If you are interested in consulting, please register using our webform.

For other request contact mlcu[at]stat.uni-muenchen.de

For statistical consulting also consider contacting the Statistical Consulting Unit (StaBLab).


Recent and Current Projects

Find a selection of projects that resulted from consulting requests in the past

  • Personality prediction from eye-tracking data

  • Landmark recognition from satellite imaging

  • Survival prediction based on radiomics and image data

  • Classifying neck pain status using scalar and functional biomechanical variables using functional data boosting

  • Interpretable machine learning models for classifying low back pain status using functional physiological variables

  • Wildlife image classification

  • Clinical predictive modeling of post-surgical recovery in individuals with cervical radiculopathy

  • Automated classification of atmospheric circulation patterns using Deep Learning

  • Classification of rain types

  • Clustering of German tourist types

  • Prediction of sports injuries in football

Publications of the MLCU

2025


[33]
L. Zumeta-Olaskoaga • A. Bender • D.-J. Lee
Flexible modelling of time-varying exposures in event history analysis.
DAGStat 2025 - 7th Joint Statistical Meeting of the Deutsche Arbeitsgemeinschaft Statistik. Berlin, Germany, Mar 24-28, 2025. Poster presentation. Full paper available. DOI

[32] Top Journal
L. Zumeta-Olaskoaga • A. Bender • D.-J. Lee
Flexible modelling of time-varying exposures and recurrent events to analyse training load effects in team sports injuries.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 74.2. Mar. 2025. DOI

[31] Top Journal
L. BurkA. Bender • M. N. Wright
High-Dimensional Variable Selection With Competing Events Using Cooperative Penalized Regression.
Biometrical Journal 67.1. Feb. 2025. DOI

2024


[30] Top Journal
J. Gertheiss • D. Rügamer • B. X. Liew • S. Greven
Functional Data Analysis: An Introduction and Recent Developments.
Biometrical Journal 66.7. Oct. 2024. DOI GitHub

[29]
M. M. Heimer • Y. Dikhtyar • B. F. Hoppe • F. L. Herr • A. T. Stüber • T. Burkard • E. Zöller • M. P. Fabritius • L. Unterrainer • L. Adams • A. Thurner • D. Kaufmann • T. Trzaska • M. Kopp • O. Hamer • K. Maurer • I. Ristow • M. S. May • A. Tufman • J. Spiro • M. Brendel • M. Ingrisch • J. Ricke • C. C. Cyran
Software-assisted structured reporting and semi-automated TNM classification for NSCLC staging in a multicenter proof of concept study.
Insights into Imaging 15.258. Oct. 2024. DOI

[28]
A. MittermeierM. AßenmacherB. Schachtner • S. Grosu • V. Dakovic • V. Kandratovich • B. Sabel • M. Ingrisch
Automatische ICD-10-Codierung.
Die Radiologie 64. Aug. 2024. DOI

[27] Top Journal
R. Klaar • M. Rabe • A. T. Stüber • S. Hering • S. Corradini • C. Eze • S. Marschner • C. Belka • G. Landry • J. Dinkel • C. Kurz
MRI-based ventilation and perfusion imaging to predict radiation-induced pneumonitis in lung tumor patients at a 0.35T MR-Linac.
Radiotherapy and Oncology. Aug. 2024. DOI

[26] Top Journal
A. Solderer • S. P. Hicklin • M. Aßenmacher • A. Ender • P. R. Schmidlin
Influence of an allogenic collagen scaffold on implant sites with thin supracrestal tissue height: a randomized clinical trial.
Clinical Oral Investigations 28.313. May. 2024. DOI

[25] Top Journal
F. Coens • N. Knops • I. Tieken • S. Vogelaar • A. Bender • J. J. Kim • K. Krupka • L. Pape • A. Raes • B. Tönshoff • A. Prytula • C. Registry
Time-Varying Determinants of Graft Failure in Pediatric Kidney Transplantation in Europe.
Clinical Journal of the American Society of Nephrology 19.3. Mar. 2024. DOI

[24] Top Journal
W. H. Hartl • P. Kopper • L. Xu • L. Heller • M. Mironov • R. Wang • A. G. Day • G. Elke • H. KüchenhoffA. Bender
Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database.
Critical Care Medicine 50.3. Mar. 2024. DOI

[23] Top Journal
B. X. Liew • F. PfistererD. Rügamer • X. Zhai
Strategies to optimise machine learning classification performance when using biomechanical features.
Journal of Biomechanics 165. Mar. 2024. DOI

[22] Top Journal
B. X. W. Liew • D. Rügamer • A. V. Birn-Jeffery
Neuromechanical stabilisation of the centre of mass during running.
Gait and Posture 108. Feb. 2024. DOI

[21] A Conference
T. WeberM. IngrischB. BischlD. Rügamer
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction.
WACV 2024 - IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, Hawaii, Jan 04-08, 2024. DOI

2023


[20]
L. BothmannL. Wimmer • O. Charrakh • T. Weber • H. Edelhoff • W. Peters • H. Nguyen • C. Benjamin • A. Menzel
Automated wildlife image classification: An active learning tool for ecological applications.
Ecological Informatics 77. Nov. 2023. DOI

[19]
T. WeberM. IngrischB. BischlD. Rügamer
Post-hoc Orthogonalization for Mitigation of Protected Feature Bias in CXR Embeddings.
Preprint (Nov. 2023).

[18] Top Journal
B. X. W. Liew • F. M. Kovacs • D. Rügamer • A. Royuela
Automatic variable selection algorithms in prognostic factor research in neck pain.
Journal of Clinical Medicine. Sep. 2023. DOI

[17] Top Journal
F. OttD. Rügamer • L. Heublein • B. Bischl • C. Mutschler
Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition.
IEEE Access 11. Aug. 2023. DOI

[16] Top Journal
B. X. W. Liew • D. Rügamer • Q. Mei • Z. Altai • X. Zhu • X. Zhai • N. Cortes
Smooth and accurate predictions of joint contact force timeseries in gait using overparameterised deep neural networks.
Frontiers in Bioengineering and Biotechnology 11. Jul. 2023. DOI

[15]
K. RöckD. RügamerB. Bischl • U. von Toussaint • C. G. Albert
Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics.
Contributions to Plasma Physics 63.5-6. May. 2023. DOI

2022


[14] A* Conference
I. Ziegler • B. MaE. NieB. BischlD. Rügamer • B. Schubert • E. Dorigatti
What cleaves? Is proteasomal cleavage prediction reaching a ceiling?
LMRL @NeurIPS 2022 - Workshop on Learning Meaningful Representations of Life at the 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL

[13] Top Journal
E. Pretzsch • V. Heinemann • S. Stintzing • A. BenderS. Chen • J. W. Holch • F. O. Hofmann • H. Ren • F. Böschand • H. Küchenhoff • J. Werner • M. K. Angele
EMT-Related Genes Have No Prognostic Relevance in Metastatic Colorectal Cancer as Opposed to Stage II/III: Analysis of the Randomised, Phase III Trial FIRE-3 (AIO KRK 0306; FIRE-3).
Cancers 14.22. Nov. 2022. DOI

[12]
K. RöckD. RügamerB. Bischl • U. von Toussaint • C. Rea • A. Maris • R. Granetz • C. G. Albert
Data augmentation for disruption prediction via robust surrogate models.
Journal of Plasma Physics 88.5. Oct. 2022. DOI

[11] Top Journal
W. Ghada • E. Casellas • J. Herbinger • A. Garcia-Benadí • L. Bothmann • N. Estrella • J. Bech • A. Menzel
Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar.
Remote Sensing 14.18. Sep. 2022. DOI

[10] Top Journal
M. Mittermeier • M. WeigertD. RügamerH. Küchenhoff • R. Ludwig
A deep learning based classification of atmospheric circulation types over Europe: projection of future changes in a CMIP6 large ensemble.
Environmental Research Letters 17.8. Jul. 2022. DOI

[9] A Conference
F. OttD. Rügamer • L. Heublein • B. Bischl • C. Mutschler
Joint Classification and Trajectory Regression of Online Handwriting Using a Multi-Task Learning Approach.
WACV 2022 - IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, Hawaii, Jan 04-08, 2022. DOI

[8] Top Journal
A. Python • A. Bender • M. Blangiardo • J. B. Illian • Y. Lin • B. Liu • T. C. D. Lucas • S. Tan • Y. Wen • D. Svanidze • J. Yin
A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 185.1. Jan. 2022. DOI

2021


[7] A* Conference
T. WeberM. Ingrisch • M. Fabritius • B. BischlD. Rügamer
Survival-oriented embeddings for improving accessibility to complex data structures.
Bridging the Gap: from ML Research to Clinical Practice @NeurIPS 2021 - Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021.

[6] A* Conference
T. WeberM. IngrischB. BischlD. Rügamer
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Deep Generative Models and Downstream Applications @NeurIPS 2021 - Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

[5] A* Conference
M. Mittermeier • M. WeigertD. Rügamer
Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach.
Tackling Climate Change with ML @NeurIPS 2021 - Workshop on Tackling Climate Change with Machine Learning at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

[4] Top Journal
M. P. Fabritius • M. Seidensticker • J. Rueckel • C. Heinze • M. Pech • K. J. Paprottka • P. M. Paprottka • J. TopalisA. Bender • J. Ricke • A. MittermeierM. Ingrisch
Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer.
Journal of Clinical Medicine 10.16. Aug. 2021. DOI

[3] Top Journal
A. Python • A. Bender • A. K. Nandi • P. A. Hancock • R. Arambepola • J. Brandsch • T. C. D. Lucas
Predicting non-state terrorism worldwide.
Science Advances 7.31. Jul. 2021. DOI

2019


[2]
G. KönigM. Grosse-Wentrup
A Causal Perspective on Challenges for AI in Precision Medicine.
PMBC 2019 - 2nd International Congress on Precision Medicine. Munich, Germany, Oct 14-15, 2019.

[1] A Conference
J. Goschenhofer • F. M. J. Pfister • K. A. Yuksel • B. Bischl • U. Fietzek • J. Thomas
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning.
ECML-PKDD 2019 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Wuerzburg, Germany, Sep 16-20, 2019. DOI

Learn More About Our Opportunities

For Junior Members

The MCML offers its Junior Members valuable initiatives to promote their professional and academic development.

For Research X-Change

The AI X-Change program aims to support PhD-students at MCML to collaborate internationally with top research institutions in the field of ML.

For PhD Applicants

We advertise PhD positions on an annual basis, our call for applications is usually released in autumn.

For Schools

We feature multiple outreach programs to make AI-research more accessible and to contribute to the further education of different target groups.

For Potential Partners

MCML conducts ongoing collaborations with academia, industry, and society.

Back to Top