Home | Opportunities | MLCU

MCML - Machine Learning Consulting Unit

The Machine Learning Consulting Unit (MLCU) is part of the of the MCML and offers applied researchers scientific consulting regarding the application and evaluation of machine learning methods.

Empowering Research Through Expert Consulting

Our primary goal is to provide consulting to applied sciences, for example medicine, psychology, biology and others. We aim to provide solutions, that based on our experience and expertise are most suitable to answer the research question at hand.

Consulting is free of charge (ca. 8h per project) for members of the MCML and the LMU. Consulting outside the MCML and LMU is also possible, but needs to be negotiated on a case by case basis. We also welcome joint research projects with the goal of publication and other forms of cooperation.

If you are interested in consulting, please contact us. Our experience shows, that it is advisable to register for consulting as early in the project as possible or even at the planning stage.

Team

Link to Andreas Bender

Andreas Bender

Dr.

Coordinator Statistical and Machine Learning Consulting

Machine Learning Consulting Unit (MLCU)

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Director

Statistical Learning & Data Science

Link to Ludwig Bothmann

Ludwig Bothmann

Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Principal Investigator

Data Science Group


Contact

If you are interested in consulting, please register using our webform.

For other request contact mlcu[at]stat.uni-muenchen.de

For statistical consulting also consider contacting the Statistical Consulting Unit (StaBLab).


Recent and Current Projects

Find a selection of projects that resulted from consulting requests in the past

  • Personality prediction from eye-tracking data

  • Landmark recognition from satellite imaging

  • Survival prediction based on radiomics and image data

  • Classifying neck pain status using scalar and functional biomechanical variables using functional data boosting

  • Interpretable machine learning models for classifying low back pain status using functional physiological variables

  • Wildlife image classification

  • Clinical predictive modeling of post-surgical recovery in individuals with cervical radiculopathy

  • Automated classification of atmospheric circulation patterns using Deep Learning

  • Classification of rain types

  • Clustering of German tourist types

  • Prediction of sports injuries in football

Publications of the MLCU

2024


[30]
M. M. H. Maurice M. Heimer, Y. Dikhtyar, B. F. Hoppe, F. L. Herr, A. T. Stüber, T. Burkard, E. Zöller, M. P. Fabritius, L. Unterrainer, L. Adams, A. Thurner, D. Kaufmann, T. Trzaska, M. Kopp, O. Hamer, K. Maurer, I. Ristow, M. S. May, A. Tufman, J. Spiro, M. Brendel, M. Ingrisch, J. Ricke and C. C. Cyran.
Software-assisted structured reporting and semi-automated TNM classification for NSCLC staging in a multicenter proof of concept study.
Insights into Imaging 15.258 (Oct. 2024). DOI.
Abstract

In this multi-center study, we proposed a structured reporting (SR) framework for non-small cell lung cancer (NSCLC) and developed a software-assisted tool to automatically translate image-based findings and annotations into TNM classifications. The aim of this study was to validate the software-assisted SR tool for NSCLC, assess its potential clinical impact in a proof-of-concept study, and evaluate current reporting standards in participating institutions.

MCML Authors
Link to Theresa Stüber

Theresa Stüber

Clinical Data Science in Radiology

Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology


[29]
A. Mittermeier, M. Aßenmacher, B. Schachtner, S. Grosu, V. Dakovic, V. Kandratovich, B. Sabel and M. Ingrisch.
Automatische ICD-10-Codierung.
Die Radiologie 64 (Aug. 2024). DOI.
MCML Authors
Link to Andreas Mittermeier

Andreas Mittermeier

Dr.

Clinical Data Science in Radiology

Link to Matthias Aßenmacher

Matthias Aßenmacher

Dr.

Statistical Learning & Data Science

Link to Balthasar Schachtner

Balthasar Schachtner

Dr.

Clinical Data Science in Radiology

Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology


[28]
R. Klaar, M. Rabe, A. T. Stüber, S. Hering, S. Corradini, C. Eze, S. Marschner, C. Belka, G. Landry, J. Dinkel and C. Kurz.
MRI-based ventilation and perfusion imaging to predict radiation-induced pneumonitis in lung tumor patients at a 0.35T MR-Linac.
Radiotherapy and Oncology (Aug. 2024). DOI.
Abstract

Radiation-induced pneumonitis (RP), diagnosed 6–12 weeks after treatment, is a complication of lung tumor radiotherapy. So far, clinical and dosimetric parameters have not been reliable in predicting RP. We propose using non-contrast enhanced magnetic resonance imaging (MRI) based functional parameters acquired over the treatment course for patient stratification for improved follow-up.

MCML Authors
Link to Theresa Stüber

Theresa Stüber

Clinical Data Science in Radiology


[27]
A. Solderer, S. P. Hicklin, M. Aßenmacher, A. Ender and P. R. Schmidlin.
Influence of an allogenic collagen scaffold on implant sites with thin supracrestal tissue height: a randomized clinical trial.
Clinical Oral Investigations 28.313 (May. 2024). DOI.
MCML Authors
Link to Matthias Aßenmacher

Matthias Aßenmacher

Dr.

Statistical Learning & Data Science


[26]
F. Coens, N. Knops, I. Tieken, S. Vogelaar, A. Bender, J. J. Kim, K. Krupka, L. Pape, A. Raes, B. Tönshoff, A. Prytula and C. Registry.
Time-Varying Determinants of Graft Failure in Pediatric Kidney Transplantation in Europe.
Clinical Journal of the American Society of Nephrology 19.3 (Mar. 2024). DOI.
Abstract

Little is known about the time-varying determinants of kidney graft failure in children. We performed a retrospective study of primary pediatric kidney transplant recipients (younger than 18 years) from the Eurotransplant registry (1990-2020). Piece-wise exponential additive mixed models were applied to analyze time-varying recipient, donor, and transplant risk factors. Primary outcome was death-censored graft failure.

MCML Authors
Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)


[25]
W. H. Hartl, P. Kopper, L. Xu, L. Heller, M. Mironov, R. Wang, A. G. Day, G. Elke, H. Küchenhoff and A. Bender.
Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database.
Critical Care Medicine 50.3 (Mar. 2024). DOI.
Abstract

The association between protein intake and the need for mechanical ventilation (MV) is controversial. We aimed to investigate the associations between protein intake and outcomes in ventilated critically ill patients.

MCML Authors
Link to Helmut Küchenhoff

Helmut Küchenhoff

Prof. Dr.

Statistical Consulting Unit (StaBLab)

Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)


[24]
B. X. Liew, F. Pfisterer, D. Rügamer and X. Zhai.
Strategies to optimise machine learning classification performance when using biomechanical features.
Journal of Biomechanics 165 (Mar. 2024). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[23]
B. X. W. Liew, D. Rügamer and A. V. Birn-Jeffery.
Neuromechanical stabilisation of the centre of mass during running.
Gait and Posture 108 (Feb. 2024). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[22]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024. DOI.
MCML Authors
Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[21]
J. Gertheiss, D. Rügamer, B. Liew and S. Greven.
Functional Data Analysis: An Introduction and Recent Developments.
Biometrical Journal (2024). To be published. Preprint at arXiv. arXiv. GitHub.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


2023


[20]
L. Bothmann, L. Wimmer, O. Charrakh, T. Weber, H. Edelhoff, W. Peters, H. Nguyen, C. Benjamin and A. Menzel.
Automated wildlife image classification: An active learning tool for ecological applications.
Ecological Informatics 77 (Nov. 2023). DOI.
MCML Authors
Link to Ludwig Bothmann

Ludwig Bothmann

Dr.

Statistical Learning & Data Science

Link to Lisa Wimmer

Lisa Wimmer

Statistical Learning & Data Science


[19]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Unreading Race: Purging Protected Features from Chest X-ray Embeddings.
Under review. Preprint at arXiv (Nov. 2023). arXiv.
MCML Authors
Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[18]
B. X. W. Liew, F. M. Kovacs, D. Rügamer and A. Royuela.
Automatic variable selection algorithms in prognostic factor research in neck pain.
Journal of Clinical Medicine (Sep. 2023). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[17]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition.
IEEE Access 11 (Aug. 2023). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science


[16]
B. X. W. Liew, D. Rügamer, Q. Mei, Z. Altai, X. Zhu, X. Zhai and N. Cortes.
Smooth and accurate predictions of joint contact force timeseries in gait using overparameterised deep neural networks.
Frontiers in Bioengineering and Biotechnology 11 (Jul. 2023). DOI.
Abstract

Alterations in joint contact forces (JCFs) are thought to be important mechanisms for the onset and progression of many musculoskeletal and orthopaedic pain disorders. Computational approaches to JCFs assessment represent the only non-invasive means of estimating in-vivo forces; but this cannot be undertaken in free-living environments. Here, we used deep neural networks to train models to predict JCFs, using only joint angles as predictors. Our neural network models were generally able to predict JCFs with errors within published minimal detectable change values. The errors ranged from the lowest value of 0.03 bodyweight (BW) (ankle medial-lateral JCF in walking) to a maximum of 0.65BW (knee VT JCF in running). Interestingly, we also found that over parametrised neural networks by training on longer epochs (>100) resulted in better and smoother waveform predictions. Our methods for predicting JCFs using only joint kinematics hold a lot of promise in allowing clinicians and coaches to continuously monitor tissue loading in free-living environments.

MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[15]
K. Rath, D. Rügamer, B. Bischl, U. von Toussaint and C. Albert.
Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics.
Contributions to Plasma Physics 63.5-6 (May. 2023). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science


2022


[14]
I. Ziegler, B. Ma, E. Nie, B. Bischl, D. Rügamer, B. Schubert and E. Dorigatti.
What cleaves? Is proteasomal cleavage prediction reaching a ceiling?.
Workshop on Learning Meaningful Representations of Life (LMRL 2022) at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL.
MCML Authors
Link to Bolei Ma

Bolei Ma

Social Data Science and AI Lab

Link to Ercong Nie

Ercong Nie

Statistical NLP and Deep Learning

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[13]
E. Pretzsch, V. Heinemann, S. Stintzing, A. Bender, S. Chen, J. W. Holch, F. O. Hofmann, H. Ren, F. Böschand, H. Küchenhoff, J. Werner and W. K. Angele.
EMT-Related Genes Have No Prognostic Relevance in Metastatic Colorectal Cancer as Opposed to Stage II/III: Analysis of the Randomised, Phase III Trial FIRE-3 (AIO KRK 0306; FIRE-3).
Cancers 14.22 (Nov. 2022). DOI.
MCML Authors
Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)

Link to Shuo Chen

Shuo Chen

Database Systems & Data Mining

Link to Helmut Küchenhoff

Helmut Küchenhoff

Prof. Dr.

Statistical Consulting Unit (StaBLab)


[12]
K. Rath, D. Rügamer, B. Bischl, U. von Toussaint, C. Rea, A. Maris, R. Granetz and C. Albert.
Data augmentation for disruption prediction via robust surrogate models.
Journal of Plasma Physics 88.5 (Oct. 2022). DOI.
Abstract

The goal of this work is to generate large statistically representative data sets to train machine learning models for disruption prediction provided by data from few existing discharges. Such a comprehensive training database is important to achieve satisfying and reliable prediction results in artificial neural network classifiers. Here, we aim for a robust augmentation of the training database for multivariate time series data using Student $t$ process regression. We apply Student $t$ process regression in a state space formulation via Bayesian filtering to tackle challenges imposed by outliers and noise in the training data set and to reduce the computational complexity. Thus, the method can also be used if the time resolution is high. We use an uncorrelated model for each dimension and impose correlations afterwards via colouring transformations. We demonstrate the efficacy of our approach on plasma diagnostics data of three different disruption classes from the DIII-D tokamak. To evaluate if the distribution of the generated data is similar to the training data, we additionally perform statistical analyses using methods from time series analysis, descriptive statistics and classic machine learning clustering algorithms.

MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science


[11]
W. Ghada, E. Casellas, J. Herbinger, A. Garcia-Benadí, L. Bothmann, N. Estrella, J. Bech and A. Menzel.
Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar.
Remote Sensing 14.18 (Sep. 2022). DOI.
MCML Authors
Link to Ludwig Bothmann

Ludwig Bothmann

Dr.

Statistical Learning & Data Science


[10]
M. Mittermeier, M. Weigert, D. Rügamer, H. Küchenhoff and R. Ludwig.
A deep learning based classification of atmospheric circulation types over Europe: projection of future changes in a CMIP6 large ensemble.
Environmental Research Letters 17.8 (Jul. 2022). DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

Link to Helmut Küchenhoff

Helmut Küchenhoff

Prof. Dr.

Statistical Consulting Unit (StaBLab)


[9]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Joint Classification and Trajectory Regression of Online Handwriting Using a Multi-Task Learning Approach.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022). Waikoloa, Hawaii, Jan 04-08, 2022. DOI.
MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science


[8]
A. Python, A. Bender, M. Blangiardo, J. B. Illian, Y. Lin, B. Liu, T. C. D. Lucas, S. Tan, Y. Wen, D. Svanidze and J. Yin.
A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 185.1 (Jan. 2022). DOI.
MCML Authors
Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)


2021


[7]
T. Weber, M. Ingrisch, M. Fabritius, B. Bischl and D. Rügamer.
Survival-oriented embeddings for improving accessibility to complex data structures.
Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021. arXiv.
MCML Authors
Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[6]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021. PDF.
MCML Authors
Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology

Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science

Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[5]
M. Mittermeier, M. Weigert and D. Rügamer.
Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach.
Workshop on Tackling Climate Change with Machine Learning at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021. PDF.
Abstract

Europe was hit by several, disastrous heat and drought events in recent summers. Besides thermodynamic influences, such hot and dry extremes are driven by certain atmospheric situations including anticyclonic conditions. Effects of climate change on atmospheric circulations are complex and many open research questions remain in this context, e.g., on future trends of anticyclonic conditions. Based on the combination of a catalog of labeled circulation patterns and spatial atmospheric variables, we propose a smoothed convolutional neural network classifier for six types of anticyclonic circulations that are associated with drought and heat. Our work can help to identify important drivers of hot and dry extremes in climate simulations, which allows to unveil the impact of climate change on these drivers. We address various challenges inherent to circulation pattern classification that are also present in other climate patterns, e.g., subjective labels and unambiguous transition periods.

MCML Authors
Link to David Rügamer

David Rügamer

Prof. Dr.

Data Science Group


[4]
M. P. Fabritius, M. Seidensticker, J. Rueckel, C. Heinze, M. Pech, K. J. Paprottka, P. M. Paprottka, J. Topalis, A. Bender, J. Ricke, A. Mittermeier and M. Ingrisch.
Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer.
Journal of Clinical Medicine 10.16 (Aug. 2021). DOI.
MCML Authors
Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)

Link to Andreas Mittermeier

Andreas Mittermeier

Dr.

Clinical Data Science in Radiology

Link to Michael Ingrisch

Michael Ingrisch

Prof. Dr.

Clinical Data Science in Radiology


[3]
A. Python, A. Bender, A. K. Nandi, P. A. Hancock, R. Arambepola, J. Brandsch and T. C. D. Lucas.
Predicting non-state terrorism worldwide.
Science Advances 7.31 (Jul. 2021). DOI.
MCML Authors
Link to Andreas Bender

Andreas Bender

Dr.

Machine Learning Consulting Unit (MLCU)


2019


[2]
G. König and M. Grosse-Wentrup.
A Causal Perspective on Challenges for AI in Precision Medicine.
2nd International Congress on Precision Medicine (PMBC 2019). Munich, Germany, Oct 14-15, 2019.
MCML Authors
Link to Moritz Grosse-Wentrup

Moritz Grosse-Wentrup

Prof. Dr.

* Former member


[1]
J. Goschenhofer, F. M. J. Pfister, K. A. Yuksel, B. Bischl, U. Fietzek and J. Thomas.
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019. DOI.
MCML Authors
Link to Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning & Data Science