15.02.2022

Teaser image to

Two papers at AAAI 2022

36th Conference on Artificial Intelligence (AAAI 2022). Virtual, 22.02.2022–01.03.2022

We are happy to announce that MCML researchers are represented with two papers at AAAI 2022:

Y. Liu, Y. Ma, M. Hildebrandt, M. Joblin and V. Tresp.
TLogic: Temporal logical rules for explainable link forecasting on temporal knowledge graphs.
AAAI 2022 - 36th Conference on Artificial Intelligence. Virtual, Feb 22-Mar 01, 2022. DOI
Abstract

Conventional static knowledge graphs model entities in relational data as nodes, connected by edges of specific relation types. However, information and knowledge evolve continuously, and temporal dynamics emerge, which are expected to influence future situations. In temporal knowledge graphs, time information is integrated into the graph by equipping each edge with a timestamp or a time range. Embedding-based methods have been introduced for link prediction on temporal knowledge graphs, but they mostly lack explainability and comprehensible reasoning chains. Particularly, they are usually not designed to deal with link forecasting – event prediction involving future timestamps. We address the task of link forecasting on temporal knowledge graphs and introduce TLogic, an explainable framework that is based on temporal logical rules extracted via temporal random walks. We compare TLogic with state-of-the-art baselines on three benchmark datasets and show better overall performance while our method also provides explanations that preserve time consistency. Furthermore, in contrast to most state-of-the-art embedding-based methods, TLogic works well in the inductive setting where already learned rules are transferred to related datasets with a common vocabulary.

MCML Authors
Link to website

Yunpu Ma

Dr.

Artificial Intelligence & Machine Learning

Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Database Systems & Data Mining


S. Sharifzadeh, S. M. Baharlou, M. Schmitt, H. Schütze and V. Tresp.
Improving Scene Graph Classification by Exploiting Knowledge from Texts.
AAAI 2022 - 36th Conference on Artificial Intelligence. Virtual, Feb 22-Mar 01, 2022. DOI
Abstract

Training scene graph classification models requires a large amount of annotated image data. Meanwhile, scene graphs represent relational knowledge that can be modeled with symbolic data from texts or knowledge graphs. While image annotation demands extensive labor, collecting textual descriptions of natural scenes requires less effort. In this work, we investigate whether textual scene descriptions can substitute for annotated image data. To this end, we employ a scene graph classification framework that is trained not only from annotated images but also from symbolic data. In our architecture, the symbolic entities are first mapped to their correspondent image-grounded representations and then fed into the relational reasoning pipeline. Even though a structured form of knowledge, such as the form in knowledge graphs, is not always available, we can generate it from unstructured texts using a transformer-based language model. We show that by fine-tuning the classification pipeline with the extracted knowledge from texts, we can achieve ~8x more accurate results in scene graph classification, ~3x in object classification, and ~1.5x in predicate classification, compared to the supervised baselines with only 1% of the annotated images.

MCML Authors
Link to Profile Hinrich Schütze

Hinrich Schütze

Prof. Dr.

Statistical NLP and Deep Learning

Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Database Systems & Data Mining


15.02.2022


Subscribe to RSS News feed

Related

Link to

05.12.2024

26 papers at NeurIPS 2024

38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver, Canada, 10.12.2024 - 15.12.2024


Link to

06.11.2024

20 papers at EMNLP 2024

Conference on Empirical Methods in Natural Language Processing (EMNLP 2024). Miami, FL, USA, 12.11.2024 - 16.11.2024


Link to

18.10.2024

Three papers at ECAI 2024

27th European Conference on Artificial Intelligence (ECAI 2024). Santiago de Compostela, Spain, 19.10.2024 - 24.10.2024


Link to

01.10.2024

16 papers at MICCAI 2024

27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024). Marrakesh, Morocco, 06.10.2024 - 10.10.2024


Link to

26.09.2024

20 papers at ECCV 2024

18th European Conference on Computer Vision (ECCV 2024). Milano, Italy, 29.09.2024 - 04.10.2024