15.09.2021

Teaser image to

MCML Researchers With Two Papers at MICCAI 2021

24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). Strasbourg, France, 27.09.2021–01.10.2021

We are happy to announce that MCML researchers are represented with two papers at MICCAI 2021. Congrats to our researchers!

Main Track (2 papers)

A. Khakzar, S. Musatian, J. Buchberger, I. V. Quiroz, N. Pinger, S. Baselizadeh, S. T. Kim and N. Navab.
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub
Abstract

Convolutional neural networks are showing promise in the automatic diagnosis of thoracic pathologies on chest x-rays. Their black-box nature has sparked many recent works to explain the prediction via input feature attribution methods (aka saliency methods). However, input feature attribution methods merely identify the importance of input regions for the prediction and lack semantic interpretation of model behavior. In this work, we first identify the semantics associated with internal units (feature maps) of the network. We proceed to investigate the following questions; Does a regression model that is only trained with COVID-19 severity scores implicitly learn visual patterns associated with thoracic pathologies? Does a network that is trained on weakly labeled data (e.g. healthy, unhealthy) implicitly learn pathologies? Moreover, we investigate the effect of pretraining and data imbalance on the interpretability of learned features. In addition to the analysis, we propose semantic attribution to semantically explain each prediction. We present our findings using publicly available chest pathologies (CheXpert [5], NIH ChestX-ray8 [25]) and COVID-19 datasets (BrixIA [20], and COVID-19 chest X-ray segmentation dataset [4]).

MCML Authors
Ashkan Khakzar

Ashkan Khakzar

Dr.

* Former Member

Link to Profile Nassir Navab

Nassir Navab

Prof. Dr.

Computer Aided Medical Procedures & Augmented Reality


A. Khakzar, Y. Zhang, W. Mansour, Y. Cai, Y. Li, Y. Zhang, S. T. Kim and N. Navab.
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub
Abstract

Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays. In order to establish trust in the clinical routine, the networks’ prediction mechanism needs to be interpretable. One principal approach to interpretation is feature attribution. Feature attribution methods identify the importance of input features for the output prediction. Building on Information Bottleneck Attribution (IBA) method, for each prediction we identify the chest X-ray regions that have high mutual information with the network’s output. Original IBA identifies input regions that have sufficient predictive information. We propose Inverse IBA to identify all informative regions. Thus all predictive cues for pathologies are highlighted on the X-rays, a desirable property for chest X-ray diagnosis. Moreover, we propose Regression IBA for explaining regression models. Using Regression IBA we observe that a model trained on cumulative severity score labels implicitly learns the severity of different X-ray regions. Finally, we propose Multi-layer IBA to generate higher resolution and more detailed attribution/saliency maps. We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-agnostic feature importance metrics on NIH Chest X-ray8 and BrixIA datasets.

MCML Authors
Ashkan Khakzar

Ashkan Khakzar

Dr.

* Former Member

Link to website

Yawei Li

Statistical Learning and Data Science

Link to Profile Nassir Navab

Nassir Navab

Prof. Dr.

Computer Aided Medical Procedures & Augmented Reality


15.09.2021


Subscribe to RSS News feed

Related

Link to Mingyang Wang receives Award at ACL 2025

18.08.2025

Mingyang Wang Receives Award at ACL 2025

MCML Junior Member Mingyang Wang wins SAC Highlights Award at ACL 2025 for research on cross-lingual consistency in language models.

Link to Digital Twins for Surgery - with researcher Azade Farshad

18.08.2025

Digital Twins for Surgery - With Researcher Azade Farshad

Azade Farshad develops patient digital twins at TUM & MCML to improve personalized treatment, surgical planning, and training.

Link to From Physics Dreams to Algorithm Discovery - with Niki Kilbertus

13.08.2025

From Physics Dreams to Algorithm Discovery - With Niki Kilbertus

Niki Kilbertus develops AI algorithms to uncover cause and effect, making science smarter and decisions in fields like medicine more reliable.

Link to AI for Dynamic Urban Mapping - with researcher Shanshan Bai

11.08.2025

AI for Dynamic Urban Mapping - With Researcher Shanshan Bai

Shanshan Bai uses geo-tagged social media and AI to map cities in real time. Part of KI Trans, funded by DATIpilot to support AI in education.

Link to What is intelligence—and what kind of intelligence do we want in our future? With Sven Nyholm

06.08.2025

What Is Intelligence—and What Kind of Intelligence Do We Want in Our Future? With Sven Nyholm

Sven Nyholm explores how AI reshapes authorship, responsibility and creativity, calling for democratic oversight in shaping our AI future.