15.10.2020

Invited Presentation at 1st CIKM 2020 Workshop on Combining Symbolic and Sub-Symbolic Methods and Their Applications (CSSA-CIKM 2020)
Learning With Temporal Knowledge Graphs
MCML PI Volker Tresp, Yunpu Ma and Zhen Han review recently developed learning-based algorithms for temporal knowledge graphs completion and forecasting. Knowledge graphs, also known as episodic or time-dependent knowledge graphs are large-scale event databases that describe temporally evolving multi-relational data.
15.10.2020
Related

27.02.2025
MCML Researchers With Six Papers at WACV 2025
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025). Tucson, AZ, USA, 28.02.2025 - 04.03.2024

24.02.2025
MCML Researchers With Seven Papers at AAAI 2025
39th Conference on Artificial Intelligence (AAAI 2025). Philadelphia, PA, USA, 25.02.2025 - 04.03.2024

05.12.2024
MCML Researchers With 27 Papers at NeurIPS 2024
38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver, Canada, 10.12.2024 - 15.12.2024